分割
交叉口(航空)
编码器
计算机科学
计算机视觉
鉴定(生物学)
对象(语法)
人工智能
边距(机器学习)
算法
比例(比率)
模式识别(心理学)
数据挖掘
工程类
机器学习
植物
物理
量子力学
生物
航空航天工程
操作系统
作者
Lizhi Xu,Yaodong Wang,Anqi Dong,Liqiang Zhu,Hongmei Shi,Zujun Yu
标识
DOI:10.1016/j.tust.2023.105266
摘要
We propose a new hybrid model algorithm that addresses the challenges of recognizing multiple objects. Specifically, objects are recognized from massive, large-scale, and complex tunnel images without repeated parameter adjustments and high-cost annotation datasets. Our algorithm utilizes a multi-scale, fusion-based encoder–decoder segmentation model to classify objects from high-resolution images of the tunnel surfaces. To enhance the accuracy of crack identification from complex backgrounds, we incorporate the Expanded Threshold Search (ETS) algorithm and the Local Window Extraction (LWE) algorithm. The acquisition device and the algorithm, implementing the multi-object dataset, have successfully tested, whereby it recognizes five objects and attains the highest Intersection over Union (39.3% for the crack object, 65.6% for the leakage object, and 75.7% for the rest).
科研通智能强力驱动
Strongly Powered by AbleSci AI