A predictive model for determining the nitrite concentration in the effluent of an anammox reactor using ensemble regression tree algorithm

厌氧氨氧化菌 亚硝酸盐 流出物 均方误差 回归分析 数学 回归 算法 决定系数 线性回归 化学 环境科学 统计 环境工程 氮气 硝酸盐 反硝化 反硝化细菌 有机化学
作者
Yikun Huang,Run Su,Yinan Bu,Bin Ma
出处
期刊:Chemosphere [Elsevier]
卷期号:339: 139553-139553 被引量:1
标识
DOI:10.1016/j.chemosphere.2023.139553
摘要

Anaerobic ammonium oxidation (anammox) is a cost-effective biological nitrogen removal method for treating wastewater. Nitrite has strong negative effect on microbial activity of anammox bacteria, while the conventional equitment available for determining nitrite on-line is challenging due to high price. By knowing the concentration of nitrite in the effluent, its concentration in the reactor can be controlled accordingly. To investigate this, an ensemble regression tree algorithm was used to establish the predictive model proposed in the current work. Moreover, the Bayesian algorithm was adopted to systematically optimize various parameters of machine learning algorithms. The predicted concentrations of nitrite were in good agreement with the observed values, and the coefficient of determination (R2) and root mean squared error (RMSE) values reached 0.91 and 4.81, respectively. Furthermore, the model established by the ensemble regression tree algorithm was compared with models established by commonly used machine learning algorithms. Finally, the established models were applied to another anammox reactor, and the predicted results of ensemble regression tree model were found to be in good agreement with the experimental values with R2 and RMSE values of 0.84 and 6.34, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
3秒前
孔佩佩关注了科研通微信公众号
3秒前
好吃的香味完成签到,获得积分10
3秒前
4秒前
CodeCraft应助Xenia采纳,获得10
4秒前
5秒前
5秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
xiao应助Mayday采纳,获得10
5秒前
深情安青应助pursue采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
调研昵称发布了新的文献求助10
6秒前
zhuooo发布了新的文献求助10
6秒前
7秒前
科研通AI2S应助xzy998采纳,获得10
7秒前
Alice发布了新的文献求助10
7秒前
RA发布了新的文献求助10
9秒前
爆米花应助lan采纳,获得10
9秒前
10秒前
10秒前
11秒前
小胖发布了新的文献求助10
11秒前
耍酷的白山完成签到,获得积分10
12秒前
李爱国应助称心曼安采纳,获得10
12秒前
12秒前
勤劳的小蜜蜂完成签到,获得积分10
13秒前
苗条梦玉发布了新的文献求助10
14秒前
cyd发布了新的文献求助10
15秒前
小趴蔡发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
DLDL发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145789
求助须知:如何正确求助?哪些是违规求助? 2797251
关于积分的说明 7823240
捐赠科研通 2453560
什么是DOI,文献DOI怎么找? 1305699
科研通“疑难数据库(出版商)”最低求助积分说明 627543
版权声明 601484