Fusing sentiment knowledge and inter-aspect dependency based on gated mechanism for aspect-level sentiment classification

计算机科学 情绪分析 依赖关系(UML) 人工智能 判决 机制(生物学) 水准点(测量) 保险丝(电气) 极性(国际关系) 自然语言处理 生物 认识论 电气工程 工程类 哲学 遗传学 地理 细胞 大地测量学
作者
Han Yu,Xiaotang Zhou,Guishen Wang,Yuncong Feng,Hui Zhao,Junhua Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:551: 126462-126462 被引量:12
标识
DOI:10.1016/j.neucom.2023.126462
摘要

Aspect level sentiment classification is a fine-grained sentiment analysis task that aims to identify the sentiment polarity of one or more given aspects in a sentence. In natural language, words frequently carry certain sentimental tendencies, which can be beneficial in obtaining the features between aspects and contexts. On the other hand, the dependencies between different aspects in a sentence can provide sufficient information for the sentiment polarity discrimination of a target aspect. However, existing models tend to focus on sentiment knowledge or aspect interactions individually without leveraging their converged information. Therefore, we propose a model based on Gated Mechanism Fusing Sentiment Knowledge and Inter-Aspect dependency (GMF-SKIA) for Aspect-level Sentiment Classification in this paper, aiming to dynamically fuse sentiment knowledge information of words and inter-aspect dependency. Specifically, the model uses the SenticNet sentiment dictionary to add sentiment knowledge information to words during dependency tree construction, and then we introduce a graph convolutional network to obtain sentiment information of dependency tree. We utilize an aspect-related multiheaded self-attention mechanism to model the inter-aspect interactions. Moreover, we design an information gate based on gated mechanism to fuse sentiment knowledge and inter-aspect features. We performed experiments on four publicly available datasets, our model outperforms the best benchmark model by an average of 2.1% and achieves the highest accuracy of 91.56% on the Rest16 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得30
刚刚
Akim应助科研通管家采纳,获得10
刚刚
Owen应助annali采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
1秒前
柯一一应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
深情安青应助子苇采纳,获得10
2秒前
xiaojia发布了新的文献求助10
4秒前
8秒前
花城完成签到 ,获得积分10
8秒前
9秒前
alpv完成签到,获得积分10
9秒前
皇城有饭局完成签到,获得积分10
10秒前
小苹果完成签到,获得积分10
12秒前
13秒前
林123a发布了新的文献求助10
13秒前
hugo发布了新的文献求助10
15秒前
搜集达人应助璨澄采纳,获得30
15秒前
cosy发布了新的文献求助10
17秒前
qiu完成签到 ,获得积分10
18秒前
longh完成签到,获得积分10
18秒前
852应助凌晨五点的采纳,获得10
18秒前
18秒前
北纬工人完成签到,获得积分10
20秒前
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371