材料科学
微波食品加热
衰减
纳米材料
光电子学
宽带
电磁屏蔽
电介质
联轴节(管道)
吸收(声学)
带宽(计算)
极化(电化学)
纳米技术
光学
计算机科学
电信
化学
物理
物理化学
冶金
复合材料
作者
Yijie Liu,Jintang Zhou,Chenchen Li,Henghui Zhang,Yucheng Wang,Yi Yan,Lvtong Duan,Zhenyu Cheng,Yao Ma,Zhengjun Yao
标识
DOI:10.1038/s41467-024-55776-9
摘要
With the development of nanotechnology, nano-functional units of different dimensions, morphologies, and sizes exhibit the potential for efficient microwave absorption (MA) performance. However, the multi-unit coupling enhancement mechanism triggered by the alignment and orientation of nano-functional units has been neglected, hindering the further development of microwave absorbing materials (MAMs). In this paper, two typical ZIF-derived nanomaterials are self-assembled into two-dimensional ordered polyhedral superstructures by the simple ice template method. The nano-functional units exhibit distinctive dielectric-sensitive behaviors after self-assembling into two-dimensional ordered arrays. The modified 2D ordered polyhedral superstructures not only inherit the atomic-level doping and well-designed shell structure, but also further amplify the loss properties to realize the multi-scale modulated MA response. Satisfactory MA performance in C, X and Ku bands is finally achieved. In particular, the ultra-broadband microwave absorption bandwidth (EAB) of 6.41 GHz is realized at 1.82 mm thickness. Our work demonstrates the two-dimensional ordered array-induced multiscale polarization behavior, providing a direction to fully utilize the potential of wave-absorbing functional units. This work delves into the effects of orientation of ordered nano-units in 2D arrays on electromagnetic shielding. Polyhedral superstructures allow for good performance in the C, X, and Ku bands, with a bandwidth of 6.41 GHz at 1.82 mm thickness.
科研通智能强力驱动
Strongly Powered by AbleSci AI