Federated Learning Under Attack: Exposing Vulnerabilities Through Data Poisoning Attacks in Computer Networks

计算机科学 脆弱性(计算) 特征(语言学) 特征选择 计算机安全 机器学习 人工智能 随机森林 对抗制 特征学习 服务器 树(集合论) 联合学习 深度学习 数据挖掘 计算机网络 数学分析 哲学 语言学 数学
作者
Ehsan Nowroozi,Imran Haider,Rahim Taheri,Mauro Conti
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:5
标识
DOI:10.1109/tnsm.2025.3525554
摘要

Federated Learning is an approach that enables multiple devices to collectively train a shared model without sharing raw data, thereby preserving data privacy. However, federated learning systems are vulnerable to data-poisoning attacks during the training and updating stages. Three data-poisoning attacks–label flipping, feature poisoning, and VagueGAN–are tested on FL models across one out of ten clients using the CIC and UNSW datasets. For label flipping, we randomly modify labels of benign data; for feature poisoning, we alter highly influential features identified by the Random Forest technique; and for VagueGAN, we generate adversarial examples using Generative Adversarial Networks. Adversarial samples constitute a small portion of each dataset. In this study, we vary the percentages by which adversaries can modify datasets to observe their impact on the Client and Server sides. Experimental findings indicate that label flipping and VagueGAN attacks do not significantly affect server accuracy, as they are easily detectable by the Server. In contrast, feature poisoning attacks subtly undermine model performance while maintaining high accuracy and attack success rates, highlighting their subtlety and effectiveness. Therefore, feature poisoning attacks manipulate the server without causing a significant decrease in model accuracy, underscoring the vulnerability of federated learning systems to such sophisticated attacks. To mitigate these vulnerabilities, we explore a recent defensive approach known as Random Deep Feature Selection, which randomizes server features with varying sizes (e.g., 50 and 400) during training. This strategy has proven highly effective in minimizing the impact of such attacks, particularly on feature poisoning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
合适的巧荷完成签到,获得积分10
1秒前
1秒前
1秒前
lilili应助酒梅子采纳,获得10
1秒前
快乐的胖子应助霸气怀蕾采纳,获得30
2秒前
桐桐应助予秋采纳,获得10
2秒前
草莓发布了新的文献求助10
3秒前
fane完成签到,获得积分10
4秒前
5秒前
jclin发布了新的文献求助10
5秒前
6秒前
超级训熊师完成签到,获得积分10
9秒前
瘦瘦天奇完成签到,获得积分10
11秒前
淡定的海冬完成签到,获得积分10
11秒前
朴实云朵发布了新的文献求助20
11秒前
12秒前
12秒前
不配.应助我爱看文献采纳,获得200
14秒前
林既明Kimei完成签到,获得积分10
14秒前
一碗白米饭orz完成签到 ,获得积分10
16秒前
17秒前
123发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
linsen完成签到 ,获得积分10
18秒前
美丽灵活呜呜豹完成签到,获得积分10
18秒前
19秒前
21秒前
jinjin完成签到,获得积分10
21秒前
bkagyin应助温柔梦松采纳,获得10
21秒前
呱嚓完成签到 ,获得积分10
21秒前
21秒前
瘦瘦天奇发布了新的文献求助10
22秒前
ZZS发布了新的文献求助10
22秒前
22秒前
聪慧海蓝发布了新的文献求助10
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070052
求助须知:如何正确求助?哪些是违规求助? 4291260
关于积分的说明 13369921
捐赠科研通 4111515
什么是DOI,文献DOI怎么找? 2251558
邀请新用户注册赠送积分活动 1256731
关于科研通互助平台的介绍 1189263