Federated Learning Under Attack: Exposing Vulnerabilities Through Data Poisoning Attacks in Computer Networks

计算机科学 脆弱性(计算) 特征(语言学) 特征选择 计算机安全 机器学习 人工智能 随机森林 对抗制 特征学习 服务器 树(集合论) 联合学习 深度学习 数据挖掘 计算机网络 数学分析 哲学 语言学 数学
作者
Ehsan Nowroozi,Imran Haider,Rahim Taheri,Mauro Conti
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsm.2025.3525554
摘要

Federated Learning is an approach that enables multiple devices to collectively train a shared model without sharing raw data, thereby preserving data privacy. However, federated learning systems are vulnerable to data-poisoning attacks during the training and updating stages. Three data-poisoning attacks–label flipping, feature poisoning, and VagueGAN–are tested on FL models across one out of ten clients using the CIC and UNSW datasets. For label flipping, we randomly modify labels of benign data; for feature poisoning, we alter highly influential features identified by the Random Forest technique; and for VagueGAN, we generate adversarial examples using Generative Adversarial Networks. Adversarial samples constitute a small portion of each dataset. In this study, we vary the percentages by which adversaries can modify datasets to observe their impact on the Client and Server sides. Experimental findings indicate that label flipping and VagueGAN attacks do not significantly affect server accuracy, as they are easily detectable by the Server. In contrast, feature poisoning attacks subtly undermine model performance while maintaining high accuracy and attack success rates, highlighting their subtlety and effectiveness. Therefore, feature poisoning attacks manipulate the server without causing a significant decrease in model accuracy, underscoring the vulnerability of federated learning systems to such sophisticated attacks. To mitigate these vulnerabilities, we explore a recent defensive approach known as Random Deep Feature Selection, which randomizes server features with varying sizes (e.g., 50 and 400) during training. This strategy has proven highly effective in minimizing the impact of such attacks, particularly on feature poisoning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小红帽发布了新的文献求助10
1秒前
1秒前
天天快乐应助笑点低的不采纳,获得10
1秒前
念姬发布了新的文献求助10
2秒前
大喜子发布了新的文献求助10
5秒前
5秒前
Amb1tionG发布了新的文献求助10
6秒前
hannah完成签到 ,获得积分10
8秒前
8秒前
笑点低的不完成签到,获得积分10
8秒前
9秒前
9秒前
猪猪hero应助liujun采纳,获得10
9秒前
nancy发布了新的文献求助10
11秒前
yy发布了新的文献求助10
12秒前
幽默的南蕾完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
娉娉0520发布了新的文献求助10
14秒前
16秒前
16秒前
赘婿应助明芬采纳,获得10
18秒前
幽默的南蕾关注了科研通微信公众号
19秒前
晚风发布了新的文献求助10
21秒前
博修发布了新的文献求助10
23秒前
Amb1tionG完成签到,获得积分10
23秒前
nancy完成签到,获得积分10
24秒前
一叶知秋完成签到,获得积分10
25秒前
27秒前
FF完成签到 ,获得积分10
27秒前
27秒前
27秒前
哈哈哈发布了新的文献求助10
30秒前
传奇3应助念姬采纳,获得10
30秒前
30秒前
ninomae完成签到 ,获得积分10
31秒前
31秒前
孤独箴言发布了新的文献求助10
32秒前
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962932
求助须知:如何正确求助?哪些是违规求助? 3508908
关于积分的说明 11143865
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791700
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803579