亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Learning Under Attack: Exposing Vulnerabilities Through Data Poisoning Attacks in Computer Networks

计算机科学 脆弱性(计算) 特征(语言学) 特征选择 计算机安全 机器学习 人工智能 随机森林 对抗制 特征学习 服务器 树(集合论) 联合学习 深度学习 数据挖掘 计算机网络 数学分析 哲学 语言学 数学
作者
Ehsan Nowroozi,Imran Haider,Rahim Taheri,Mauro Conti
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:5
标识
DOI:10.1109/tnsm.2025.3525554
摘要

Federated Learning is an approach that enables multiple devices to collectively train a shared model without sharing raw data, thereby preserving data privacy. However, federated learning systems are vulnerable to data-poisoning attacks during the training and updating stages. Three data-poisoning attacks–label flipping, feature poisoning, and VagueGAN–are tested on FL models across one out of ten clients using the CIC and UNSW datasets. For label flipping, we randomly modify labels of benign data; for feature poisoning, we alter highly influential features identified by the Random Forest technique; and for VagueGAN, we generate adversarial examples using Generative Adversarial Networks. Adversarial samples constitute a small portion of each dataset. In this study, we vary the percentages by which adversaries can modify datasets to observe their impact on the Client and Server sides. Experimental findings indicate that label flipping and VagueGAN attacks do not significantly affect server accuracy, as they are easily detectable by the Server. In contrast, feature poisoning attacks subtly undermine model performance while maintaining high accuracy and attack success rates, highlighting their subtlety and effectiveness. Therefore, feature poisoning attacks manipulate the server without causing a significant decrease in model accuracy, underscoring the vulnerability of federated learning systems to such sophisticated attacks. To mitigate these vulnerabilities, we explore a recent defensive approach known as Random Deep Feature Selection, which randomizes server features with varying sizes (e.g., 50 and 400) during training. This strategy has proven highly effective in minimizing the impact of such attacks, particularly on feature poisoning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Psycho完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
28秒前
34秒前
38秒前
Marciu33发布了新的文献求助10
40秒前
美女博士完成签到 ,获得积分10
42秒前
53秒前
ceeray23发布了新的文献求助20
56秒前
不在意完成签到 ,获得积分10
58秒前
cuicui发布了新的文献求助10
59秒前
lsl完成签到 ,获得积分10
1分钟前
龙妍琳完成签到,获得积分10
1分钟前
美女博士发布了新的文献求助10
1分钟前
地理牛马完成签到 ,获得积分10
1分钟前
慧灰huihui完成签到,获得积分10
1分钟前
酷波er应助慧灰huihui采纳,获得10
1分钟前
可耐的远侵完成签到 ,获得积分20
1分钟前
obedVL完成签到,获得积分10
1分钟前
cuicui完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
一只鲨呱发布了新的文献求助10
2分钟前
追寻依波完成签到,获得积分10
2分钟前
2分钟前
yishujia发布了新的文献求助30
2分钟前
活力广缘发布了新的文献求助20
2分钟前
Y123发布了新的文献求助10
2分钟前
xaopng完成签到,获得积分10
2分钟前
爆米花应助shier采纳,获得10
2分钟前
活力广缘完成签到,获得积分10
2分钟前
左传琦完成签到 ,获得积分10
2分钟前
NOTHING完成签到 ,获得积分10
2分钟前
2分钟前
吞吞完成签到 ,获得积分10
2分钟前
慧灰huihui发布了新的文献求助10
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
英俊的铭应助慧灰huihui采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634800
求助须知:如何正确求助?哪些是违规求助? 4733832
关于积分的说明 14989260
捐赠科研通 4792487
什么是DOI,文献DOI怎么找? 2559621
邀请新用户注册赠送积分活动 1519959
关于科研通互助平台的介绍 1480023