乙醇
乙烯
法拉第效率
氢键
化学
氢
化学工程
选择性
材料科学
催化作用
纳米技术
有机化学
电化学
分子
电极
物理化学
工程类
作者
Jing Wang,Bingling He,Pu Huang,Dongge Wang,Zechao Zhuang,Jing Xu,Chengsi Pan,Yuming Dong,Dingsheng Wang,Wei Wang,Hongwen Huang,Jiawei Zhang,Yongfa Zhu
标识
DOI:10.1002/anie.202418459
摘要
Efficient CO2 electroreduction (CO2RR) to ethanol holds promise to generate value‐added chemicals and harness renewable energy simultaneously. Yet, it remains an ongoing challenge due to the competition with thermodynamically more preferred ethylene production. Herein, we presented a CO2 reduction predilection switch from ethylene to ethanol (ethanol‐to‐ethylene ratio of ~5.4) by inherently implanting Cu sites with perfluorooctane to create interfacial non‐covalent interactions. The 1.83%F‐Cu2O organic‐inorganic hybrids (OIHs) exhibited an extraordinary ethanol faradaic efficiency (FEethanol) of ∼55.2%, with an impressive ethanol partial current density of 166 mA cm‐2 and excellent robustness over 60 hours of continuous operation. This exceptional performance ranks our 1.83%F‐Cu2O OIHs among the best‐performing ethanol‐oriented CO2RR electrocatalysts. Our findings identified that C8F18 could strengthen the interfacial hydrogen bonding connectivity, which consequently promotes the generation of active hydrogen species and preferentially favors the hydrogenation of *CHCOH to *CHCHOH, thus switching the reaction from ethylene‐preferred to ethanol‐oriented. The presented investigations highlight opportunities for using noncovalent interactions to tune the selectivity of CO2 electroreduction to ethanol, bringing it closer to practical implementation requirements.
科研通智能强力驱动
Strongly Powered by AbleSci AI