材料科学
溶剂化
水溶液
沉积(地质)
氢键
化学工程
离子
化学物理
氢
纳米技术
物理化学
有机化学
分子
古生物学
化学
物理
沉积物
工程类
生物
作者
Zhe Xiao,Xiangyu Dai,Jianfang Zhu,Dongming Liu,Luzhi Liu,Xueping Liu,Yun Li,Zhengfang Qian,Renheng Wang
标识
DOI:10.1002/adfm.202424860
摘要
Abstract Aqueous zinc‐ion batteries have garnered significant interest due to their inherent safety, cost‐effectiveness, and high capacity. However, water molecules in the electrolyte adsorb onto the surface of the negative zinc electrode via hydrogen bonding and dissociate into H + and OH − under an electric field. This creates a local alkaline environment at the interface, promoting zinc dendrite growth, surface corrosion, and hydrogen evolution reaction. Herein, a hydrogen bond competition strategy for optimizing aqueous electrolytes based on low‐cost polyhydroxyl organic additive maltitol is proposed. The addition of maltitol disrupts the hydrogen bond network of the aqueous electrolyte and reduces the activity of water molecules, replacing one of the water molecules in the solvation structure [Zn(H 2 O) 6 ] 2+ . Additionally, maltitol preferentially adsorbs on the Zn (002) surface compared to water molecules. This stable deposition of the Zn (002) crystal faces inhibits dendrite growth and hydrogen evolution. The Zn||Zn symmetric battery assembled with 0.4 m maltitol has an ultralong cycle time of 4500 h at 1 mA cm −2 , 1 mAh cm −2 . Zn||NH 4 V 4 O 10 full batteries also show better cycling performance than non‐additive devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI