亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing enzyme thermostability by combining multiple mutations using protein language model

热稳定性 化学 计算生物学 计算机科学 生物 生物化学
作者
Jiahao Bian,Pan Tan,Ting Nie,Liang Hong,Guangyu Yang
标识
DOI:10.1002/mlf2.12151
摘要

Optimizing enzyme thermostability is essential for advancements in protein science and industrial applications. Currently, (semi-)rational design and random mutagenesis methods can accurately identify single-point mutations that enhance enzyme thermostability. However, complex epistatic interactions often arise when multiple mutation sites are combined, leading to the complete inactivation of combinatorial mutants. As a result, constructing an optimized enzyme often requires repeated rounds of design to incrementally incorporate single mutation sites, which is highly time-consuming. In this study, we developed an AI-aided strategy for enzyme thermostability engineering that efficiently facilitates the recombination of beneficial single-point mutations. We utilized thermostability data from creatinase, including 18 single-point mutants, 22 double-point mutants, 21 triple-point mutants, and 12 quadruple-point mutants. Using these data as inputs, we used a temperature-guided protein language model, Pro-PRIME, to learn epistatic features and design combinatorial mutants. After two rounds of design, we obtained 50 combinatorial mutants with superior thermostability, achieving a success rate of 100%. The best mutant, 13M4, contained 13 mutation sites and maintained nearly full catalytic activity compared to the wild-type. It showed a 10.19°C increase in the melting temperature and an ~655-fold increase in the half-life at 58°C. Additionally, the model successfully captured epistasis in high-order combinatorial mutants, including sign epistasis (K351E) and synergistic epistasis (D17V/I149V). We elucidated the mechanism of long-range epistasis in detail using a dynamics cross-correlation matrix method. Our work provides an efficient framework for designing enzyme thermostability and studying high-order epistatic effects in protein-directed evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyq发布了新的文献求助10
1秒前
Emma发布了新的文献求助10
2秒前
友好小土豆完成签到 ,获得积分10
6秒前
8秒前
9秒前
9秒前
13秒前
xjz发布了新的文献求助10
14秒前
明天更好完成签到 ,获得积分10
14秒前
15秒前
呋喃发布了新的文献求助10
15秒前
李健应助Emma采纳,获得10
15秒前
17秒前
17秒前
sansan完成签到 ,获得积分10
21秒前
大模型应助郝优佳采纳,获得10
24秒前
斯文败类应助呋喃采纳,获得100
29秒前
36秒前
38秒前
hxr完成签到 ,获得积分10
38秒前
小蘑菇应助Dec采纳,获得10
39秒前
江南之南完成签到 ,获得积分10
40秒前
oleskarabach发布了新的文献求助10
40秒前
ZJ完成签到,获得积分10
41秒前
46秒前
48秒前
科研通AI6应助zyq采纳,获得10
50秒前
51秒前
fybd88发布了新的文献求助10
55秒前
57秒前
月亮不营业完成签到 ,获得积分10
1分钟前
1分钟前
悦耳笑蓝完成签到,获得积分10
1分钟前
1分钟前
悦耳笑蓝发布了新的文献求助10
1分钟前
1分钟前
完美世界应助Hhh采纳,获得10
1分钟前
1分钟前
一休完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407675
求助须知:如何正确求助?哪些是违规求助? 4525191
关于积分的说明 14101408
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436558
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604