Optimizing enzyme thermostability by combining multiple mutations using protein language model

热稳定性 化学 计算生物学 计算机科学 生物 生物化学
作者
Jiahao Bian,Pan Tan,Ting Nie,Liang Hong,Guangyu Yang
标识
DOI:10.1002/mlf2.12151
摘要

Optimizing enzyme thermostability is essential for advancements in protein science and industrial applications. Currently, (semi-)rational design and random mutagenesis methods can accurately identify single-point mutations that enhance enzyme thermostability. However, complex epistatic interactions often arise when multiple mutation sites are combined, leading to the complete inactivation of combinatorial mutants. As a result, constructing an optimized enzyme often requires repeated rounds of design to incrementally incorporate single mutation sites, which is highly time-consuming. In this study, we developed an AI-aided strategy for enzyme thermostability engineering that efficiently facilitates the recombination of beneficial single-point mutations. We utilized thermostability data from creatinase, including 18 single-point mutants, 22 double-point mutants, 21 triple-point mutants, and 12 quadruple-point mutants. Using these data as inputs, we used a temperature-guided protein language model, Pro-PRIME, to learn epistatic features and design combinatorial mutants. After two rounds of design, we obtained 50 combinatorial mutants with superior thermostability, achieving a success rate of 100%. The best mutant, 13M4, contained 13 mutation sites and maintained nearly full catalytic activity compared to the wild-type. It showed a 10.19°C increase in the melting temperature and an ~655-fold increase in the half-life at 58°C. Additionally, the model successfully captured epistasis in high-order combinatorial mutants, including sign epistasis (K351E) and synergistic epistasis (D17V/I149V). We elucidated the mechanism of long-range epistasis in detail using a dynamics cross-correlation matrix method. Our work provides an efficient framework for designing enzyme thermostability and studying high-order epistatic effects in protein-directed evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swingghost应助敏家采纳,获得20
刚刚
刚刚
JamesPei应助安详夏彤采纳,获得10
刚刚
cici发布了新的文献求助10
刚刚
Hello应助wuxunxun2015采纳,获得10
1秒前
1秒前
搜集达人应助傲骨采纳,获得10
2秒前
沉静语薇发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
英俊的铭应助张均旗采纳,获得10
3秒前
3秒前
小海绵完成签到,获得积分10
3秒前
3秒前
炫炫炫发布了新的文献求助30
4秒前
6秒前
充电宝应助轻松紫翠采纳,获得10
6秒前
彩色耳机完成签到,获得积分10
6秒前
youyi123发布了新的文献求助10
6秒前
生动靖柔完成签到,获得积分10
6秒前
开放穆发布了新的文献求助10
6秒前
冷傲的靖易完成签到,获得积分20
7秒前
清脆映真完成签到,获得积分10
7秒前
科研通AI6应助幼儿园老大采纳,获得10
7秒前
Barium发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
charih发布了新的文献求助10
9秒前
9秒前
郑方形完成签到,获得积分20
9秒前
10秒前
10秒前
万能图书馆应助贰什柒采纳,获得10
10秒前
研友_Zr2mxZ完成签到,获得积分10
10秒前
小九九完成签到 ,获得积分20
10秒前
风趣安青发布了新的文献求助10
11秒前
ding应助生动靖柔采纳,获得10
11秒前
领导范儿应助不得采纳,获得10
11秒前
cici完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565