清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimizing enzyme thermostability by combining multiple mutations using protein language model

热稳定性 化学 计算生物学 计算机科学 生物 生物化学
作者
Jiahao Bian,Pan Tan,Ting Nie,Liang Hong,Guangyu Yang
标识
DOI:10.1002/mlf2.12151
摘要

Optimizing enzyme thermostability is essential for advancements in protein science and industrial applications. Currently, (semi-)rational design and random mutagenesis methods can accurately identify single-point mutations that enhance enzyme thermostability. However, complex epistatic interactions often arise when multiple mutation sites are combined, leading to the complete inactivation of combinatorial mutants. As a result, constructing an optimized enzyme often requires repeated rounds of design to incrementally incorporate single mutation sites, which is highly time-consuming. In this study, we developed an AI-aided strategy for enzyme thermostability engineering that efficiently facilitates the recombination of beneficial single-point mutations. We utilized thermostability data from creatinase, including 18 single-point mutants, 22 double-point mutants, 21 triple-point mutants, and 12 quadruple-point mutants. Using these data as inputs, we used a temperature-guided protein language model, Pro-PRIME, to learn epistatic features and design combinatorial mutants. After two rounds of design, we obtained 50 combinatorial mutants with superior thermostability, achieving a success rate of 100%. The best mutant, 13M4, contained 13 mutation sites and maintained nearly full catalytic activity compared to the wild-type. It showed a 10.19°C increase in the melting temperature and an ~655-fold increase in the half-life at 58°C. Additionally, the model successfully captured epistasis in high-order combinatorial mutants, including sign epistasis (K351E) and synergistic epistasis (D17V/I149V). We elucidated the mechanism of long-range epistasis in detail using a dynamics cross-correlation matrix method. Our work provides an efficient framework for designing enzyme thermostability and studying high-order epistatic effects in protein-directed evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木马上市完成签到,获得积分10
13秒前
neversay4ever完成签到 ,获得积分10
17秒前
沿途有你完成签到 ,获得积分10
26秒前
王磊完成签到 ,获得积分10
1分钟前
arsenal发布了新的文献求助10
1分钟前
雪山飞龙完成签到,获得积分10
1分钟前
V_I_G完成签到 ,获得积分10
1分钟前
WebCasa完成签到,获得积分10
1分钟前
成就小蜜蜂完成签到 ,获得积分10
2分钟前
无悔完成签到 ,获得积分10
2分钟前
lyoer完成签到 ,获得积分20
2分钟前
3分钟前
3分钟前
柯伊达完成签到 ,获得积分10
3分钟前
冷傲迎梅完成签到 ,获得积分10
3分钟前
3分钟前
紫熊完成签到,获得积分10
3分钟前
喻初原完成签到 ,获得积分10
3分钟前
詹姆斯哈登完成签到,获得积分10
3分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
1437594843完成签到 ,获得积分10
4分钟前
4分钟前
MCRing完成签到 ,获得积分10
4分钟前
忘忧Aquarius完成签到,获得积分10
4分钟前
无限的寄真完成签到 ,获得积分10
4分钟前
NINI完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
mls完成签到,获得积分20
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
sissiarno应助科研通管家采纳,获得200
6分钟前
6分钟前
6分钟前
aimynora完成签到 ,获得积分10
6分钟前
燕燕于飞完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438679
求助须知:如何正确求助?哪些是违规求助? 4549812
关于积分的说明 14221011
捐赠科研通 4470698
什么是DOI,文献DOI怎么找? 2450000
邀请新用户注册赠送积分活动 1440962
关于科研通互助平台的介绍 1417449