Optimizing enzyme thermostability by combining multiple mutations using protein language model

热稳定性 上位性 突变体 点突变 定向进化 蛋白质工程 突变 突变 合理设计 计算生物学 遗传学 生物 生物化学 基因
作者
Jiahao Bian,Pan Tan,Ting Nie,Liang Hong,Guangyu Yang
标识
DOI:10.1002/mlf2.12151
摘要

Abstract Optimizing enzyme thermostability is essential for advancements in protein science and industrial applications. Currently, (semi‐)rational design and random mutagenesis methods can accurately identify single‐point mutations that enhance enzyme thermostability. However, complex epistatic interactions often arise when multiple mutation sites are combined, leading to the complete inactivation of combinatorial mutants. As a result, constructing an optimized enzyme often requires repeated rounds of design to incrementally incorporate single mutation sites, which is highly time‐consuming. In this study, we developed an AI‐aided strategy for enzyme thermostability engineering that efficiently facilitates the recombination of beneficial single‐point mutations. We utilized thermostability data from creatinase, including 18 single‐point mutants, 22 double‐point mutants, 21 triple‐point mutants, and 12 quadruple‐point mutants. Using these data as inputs, we used a temperature‐guided protein language model, Pro‐PRIME, to learn epistatic features and design combinatorial mutants. After two rounds of design, we obtained 50 combinatorial mutants with superior thermostability, achieving a success rate of 100%. The best mutant, 13M4, contained 13 mutation sites and maintained nearly full catalytic activity compared to the wild‐type. It showed a 10.19°C increase in the melting temperature and an ~655‐fold increase in the half‐life at 58°C. Additionally, the model successfully captured epistasis in high‐order combinatorial mutants, including sign epistasis (K351E) and synergistic epistasis (D17V/I149V). We elucidated the mechanism of long‐range epistasis in detail using a dynamics cross‐correlation matrix method. Our work provides an efficient framework for designing enzyme thermostability and studying high‐order epistatic effects in protein‐directed evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zkkz完成签到,获得积分10
刚刚
naitangkeke发布了新的文献求助10
1秒前
魔幻安筠发布了新的文献求助10
1秒前
xcy发布了新的文献求助10
1秒前
Rondab应助sljzhangbiao11采纳,获得10
2秒前
znn发布了新的文献求助10
2秒前
3秒前
脑洞疼应助shania采纳,获得10
3秒前
Guanpgt发布了新的文献求助30
8秒前
9秒前
10秒前
10秒前
FashionBoy应助等待的松鼠采纳,获得10
12秒前
幸福大白发布了新的文献求助10
13秒前
DHS发布了新的文献求助30
13秒前
14秒前
14秒前
14秒前
14秒前
14秒前
魔幻安筠发布了新的文献求助10
14秒前
14秒前
16秒前
如意2023发布了新的文献求助10
16秒前
田様应助华W采纳,获得10
16秒前
shania发布了新的文献求助10
20秒前
GGbond发布了新的文献求助10
20秒前
汉堡包应助化学少女采纳,获得10
21秒前
23秒前
23秒前
xcy完成签到,获得积分10
24秒前
25秒前
杜康完成签到,获得积分10
25秒前
26秒前
111完成签到,获得积分10
26秒前
28秒前
壮观的擎发布了新的文献求助10
28秒前
万能图书馆应助管箴采纳,获得10
28秒前
DHS完成签到,获得积分10
28秒前
魔幻安筠发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999546
求助须知:如何正确求助?哪些是违规求助? 3539008
关于积分的说明 11275620
捐赠科研通 3277833
什么是DOI,文献DOI怎么找? 1807725
邀请新用户注册赠送积分活动 884127
科研通“疑难数据库(出版商)”最低求助积分说明 810142