Optimizing enzyme thermostability by combining multiple mutations using protein language model

热稳定性 化学 计算生物学 计算机科学 生物 生物化学
作者
Jiahao Bian,Pan Tan,Ting Nie,Liang Hong,Guangyu Yang
标识
DOI:10.1002/mlf2.12151
摘要

Optimizing enzyme thermostability is essential for advancements in protein science and industrial applications. Currently, (semi-)rational design and random mutagenesis methods can accurately identify single-point mutations that enhance enzyme thermostability. However, complex epistatic interactions often arise when multiple mutation sites are combined, leading to the complete inactivation of combinatorial mutants. As a result, constructing an optimized enzyme often requires repeated rounds of design to incrementally incorporate single mutation sites, which is highly time-consuming. In this study, we developed an AI-aided strategy for enzyme thermostability engineering that efficiently facilitates the recombination of beneficial single-point mutations. We utilized thermostability data from creatinase, including 18 single-point mutants, 22 double-point mutants, 21 triple-point mutants, and 12 quadruple-point mutants. Using these data as inputs, we used a temperature-guided protein language model, Pro-PRIME, to learn epistatic features and design combinatorial mutants. After two rounds of design, we obtained 50 combinatorial mutants with superior thermostability, achieving a success rate of 100%. The best mutant, 13M4, contained 13 mutation sites and maintained nearly full catalytic activity compared to the wild-type. It showed a 10.19°C increase in the melting temperature and an ~655-fold increase in the half-life at 58°C. Additionally, the model successfully captured epistasis in high-order combinatorial mutants, including sign epistasis (K351E) and synergistic epistasis (D17V/I149V). We elucidated the mechanism of long-range epistasis in detail using a dynamics cross-correlation matrix method. Our work provides an efficient framework for designing enzyme thermostability and studying high-order epistatic effects in protein-directed evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清樾完成签到 ,获得积分10
刚刚
zhang完成签到,获得积分10
刚刚
驱蚊器发布了新的文献求助30
1秒前
高高发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
ZL张莉发布了新的文献求助30
2秒前
2秒前
丘比特应助积极紫翠采纳,获得10
2秒前
Liu完成签到 ,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
英姑应助研究生采纳,获得10
3秒前
英姑应助全焱采纳,获得10
4秒前
小蘑菇应助CDI和LIB采纳,获得10
4秒前
wanci应助兑现采纳,获得10
4秒前
自由傲晴完成签到 ,获得积分10
5秒前
陶醉西牛发布了新的文献求助10
6秒前
fox发布了新的文献求助10
6秒前
妙旋克里斯完成签到,获得积分10
6秒前
6秒前
纪思奇完成签到 ,获得积分10
7秒前
李朋发布了新的文献求助10
7秒前
谦让白秋完成签到,获得积分10
7秒前
8秒前
8秒前
bubbull完成签到,获得积分10
9秒前
CipherSage应助一群牛采纳,获得10
9秒前
9秒前
Fbin完成签到,获得积分10
10秒前
木棉完成签到,获得积分10
10秒前
龙仔子完成签到,获得积分10
10秒前
10秒前
轻松土豆关注了科研通微信公众号
11秒前
12秒前
訣别完成签到 ,获得积分10
12秒前
fox完成签到,获得积分10
12秒前
科研通AI5应助asd采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403