Optimizing enzyme thermostability by combining multiple mutations using protein language model

热稳定性 上位性 突变体 点突变 定向进化 蛋白质工程 突变 突变 合理设计 计算生物学 遗传学 生物 生物化学 基因
作者
Jiahao Bian,Pan Tan,Ting Nie,Liang Hong,Guangyu Yang
标识
DOI:10.1002/mlf2.12151
摘要

Abstract Optimizing enzyme thermostability is essential for advancements in protein science and industrial applications. Currently, (semi‐)rational design and random mutagenesis methods can accurately identify single‐point mutations that enhance enzyme thermostability. However, complex epistatic interactions often arise when multiple mutation sites are combined, leading to the complete inactivation of combinatorial mutants. As a result, constructing an optimized enzyme often requires repeated rounds of design to incrementally incorporate single mutation sites, which is highly time‐consuming. In this study, we developed an AI‐aided strategy for enzyme thermostability engineering that efficiently facilitates the recombination of beneficial single‐point mutations. We utilized thermostability data from creatinase, including 18 single‐point mutants, 22 double‐point mutants, 21 triple‐point mutants, and 12 quadruple‐point mutants. Using these data as inputs, we used a temperature‐guided protein language model, Pro‐PRIME, to learn epistatic features and design combinatorial mutants. After two rounds of design, we obtained 50 combinatorial mutants with superior thermostability, achieving a success rate of 100%. The best mutant, 13M4, contained 13 mutation sites and maintained nearly full catalytic activity compared to the wild‐type. It showed a 10.19°C increase in the melting temperature and an ~655‐fold increase in the half‐life at 58°C. Additionally, the model successfully captured epistasis in high‐order combinatorial mutants, including sign epistasis (K351E) and synergistic epistasis (D17V/I149V). We elucidated the mechanism of long‐range epistasis in detail using a dynamics cross‐correlation matrix method. Our work provides an efficient framework for designing enzyme thermostability and studying high‐order epistatic effects in protein‐directed evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平凡完成签到,获得积分10
4秒前
5秒前
哈利波特完成签到,获得积分10
8秒前
菓小柒完成签到 ,获得积分10
8秒前
basil完成签到,获得积分10
9秒前
大橙子发布了新的文献求助10
9秒前
mammer应助超帅无色采纳,获得10
10秒前
helloworld完成签到,获得积分10
11秒前
海洋完成签到,获得积分10
11秒前
Hina完成签到,获得积分10
12秒前
ZH完成签到,获得积分10
15秒前
yyds完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
唯梦完成签到 ,获得积分10
19秒前
詹姆斯哈登完成签到,获得积分10
22秒前
李健应助名字不好起采纳,获得10
24秒前
万历完成签到,获得积分10
24秒前
24秒前
林卷卷完成签到,获得积分10
25秒前
大葱鸭发布了新的文献求助10
27秒前
28秒前
李健应助南山无梅落采纳,获得10
28秒前
32秒前
赘婿应助大橙子采纳,获得10
34秒前
41秒前
我是大学霸完成签到,获得积分10
42秒前
随风完成签到,获得积分0
42秒前
yi完成签到 ,获得积分10
43秒前
lin完成签到,获得积分10
44秒前
huahua完成签到 ,获得积分10
44秒前
大橙子发布了新的文献求助10
47秒前
小黑完成签到,获得积分10
50秒前
ZY完成签到 ,获得积分10
53秒前
阿士大夫完成签到,获得积分0
53秒前
chai完成签到,获得积分10
53秒前
GUO完成签到,获得积分10
54秒前
111完成签到 ,获得积分10
55秒前
Llllll发布了新的文献求助200
56秒前
天下无马完成签到 ,获得积分10
57秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022