Optimizing enzyme thermostability by combining multiple mutations using protein language model

热稳定性 化学 计算生物学 计算机科学 生物 生物化学
作者
Jiahao Bian,Pan Tan,Ting Nie,Liang Hong,Guangyu Yang
标识
DOI:10.1002/mlf2.12151
摘要

Optimizing enzyme thermostability is essential for advancements in protein science and industrial applications. Currently, (semi-)rational design and random mutagenesis methods can accurately identify single-point mutations that enhance enzyme thermostability. However, complex epistatic interactions often arise when multiple mutation sites are combined, leading to the complete inactivation of combinatorial mutants. As a result, constructing an optimized enzyme often requires repeated rounds of design to incrementally incorporate single mutation sites, which is highly time-consuming. In this study, we developed an AI-aided strategy for enzyme thermostability engineering that efficiently facilitates the recombination of beneficial single-point mutations. We utilized thermostability data from creatinase, including 18 single-point mutants, 22 double-point mutants, 21 triple-point mutants, and 12 quadruple-point mutants. Using these data as inputs, we used a temperature-guided protein language model, Pro-PRIME, to learn epistatic features and design combinatorial mutants. After two rounds of design, we obtained 50 combinatorial mutants with superior thermostability, achieving a success rate of 100%. The best mutant, 13M4, contained 13 mutation sites and maintained nearly full catalytic activity compared to the wild-type. It showed a 10.19°C increase in the melting temperature and an ~655-fold increase in the half-life at 58°C. Additionally, the model successfully captured epistasis in high-order combinatorial mutants, including sign epistasis (K351E) and synergistic epistasis (D17V/I149V). We elucidated the mechanism of long-range epistasis in detail using a dynamics cross-correlation matrix method. Our work provides an efficient framework for designing enzyme thermostability and studying high-order epistatic effects in protein-directed evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼噜呼噜睡着了关注了科研通微信公众号
刚刚
一期一会完成签到,获得积分10
刚刚
刚刚
123完成签到,获得积分10
1秒前
科研通AI6应助背后的夜梅采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
flos完成签到,获得积分10
2秒前
小可啊完成签到,获得积分10
2秒前
Apple发布了新的文献求助10
2秒前
烟花应助小巧皮卡丘采纳,获得10
2秒前
Jolin发布了新的文献求助10
3秒前
小蘑菇应助落后满天采纳,获得10
3秒前
CipherSage应助xdl采纳,获得10
4秒前
4秒前
田攀完成签到,获得积分10
5秒前
5秒前
张星星完成签到 ,获得积分10
6秒前
凯k完成签到,获得积分10
6秒前
巍峨驳回了Mic应助
7秒前
bierbia发布了新的文献求助10
7秒前
张博完成签到,获得积分20
7秒前
8秒前
科研通AI6应助超帅的冷菱采纳,获得10
8秒前
大气大开完成签到,获得积分10
9秒前
10秒前
11秒前
Godzilla完成签到,获得积分10
11秒前
司徒不二发布了新的文献求助10
11秒前
章鱼发布了新的文献求助30
12秒前
12秒前
13秒前
13秒前
13秒前
CipherSage应助呆萌擎宇采纳,获得10
13秒前
14秒前
邓谷云完成签到,获得积分10
14秒前
xx发布了新的文献求助10
14秒前
14秒前
14秒前
乐观鑫鹏完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653747
求助须知:如何正确求助?哪些是违规求助? 4790572
关于积分的说明 15066040
捐赠科研通 4812391
什么是DOI,文献DOI怎么找? 2574512
邀请新用户注册赠送积分活动 1530011
关于科研通互助平台的介绍 1488724