Optimizing enzyme thermostability by combining multiple mutations using protein language model

热稳定性 化学 计算生物学 计算机科学 生物 生物化学
作者
Jiahao Bian,Pan Tan,Ting Nie,Liang Hong,Guangyu Yang
标识
DOI:10.1002/mlf2.12151
摘要

Optimizing enzyme thermostability is essential for advancements in protein science and industrial applications. Currently, (semi-)rational design and random mutagenesis methods can accurately identify single-point mutations that enhance enzyme thermostability. However, complex epistatic interactions often arise when multiple mutation sites are combined, leading to the complete inactivation of combinatorial mutants. As a result, constructing an optimized enzyme often requires repeated rounds of design to incrementally incorporate single mutation sites, which is highly time-consuming. In this study, we developed an AI-aided strategy for enzyme thermostability engineering that efficiently facilitates the recombination of beneficial single-point mutations. We utilized thermostability data from creatinase, including 18 single-point mutants, 22 double-point mutants, 21 triple-point mutants, and 12 quadruple-point mutants. Using these data as inputs, we used a temperature-guided protein language model, Pro-PRIME, to learn epistatic features and design combinatorial mutants. After two rounds of design, we obtained 50 combinatorial mutants with superior thermostability, achieving a success rate of 100%. The best mutant, 13M4, contained 13 mutation sites and maintained nearly full catalytic activity compared to the wild-type. It showed a 10.19°C increase in the melting temperature and an ~655-fold increase in the half-life at 58°C. Additionally, the model successfully captured epistasis in high-order combinatorial mutants, including sign epistasis (K351E) and synergistic epistasis (D17V/I149V). We elucidated the mechanism of long-range epistasis in detail using a dynamics cross-correlation matrix method. Our work provides an efficient framework for designing enzyme thermostability and studying high-order epistatic effects in protein-directed evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mic应助morena采纳,获得10
刚刚
刚刚
1秒前
謃河鷺起完成签到,获得积分10
1秒前
shinble发布了新的文献求助10
1秒前
2秒前
usdivff发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
夏冰雹完成签到 ,获得积分10
3秒前
大模型应助LL爱读书采纳,获得10
3秒前
Lucas应助pero采纳,获得10
3秒前
4秒前
吮指原味鸡完成签到,获得积分20
4秒前
4秒前
violet发布了新的文献求助10
5秒前
杨涵发布了新的文献求助10
5秒前
5秒前
WUHUIWEN完成签到,获得积分10
5秒前
慕青应助香蕉傲菡采纳,获得30
6秒前
皮咻完成签到,获得积分10
6秒前
和光同尘完成签到,获得积分10
6秒前
7秒前
慕青应助zw采纳,获得10
8秒前
hh发布了新的文献求助10
8秒前
大圈圈发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
方圆发布了新的文献求助30
10秒前
10秒前
11秒前
科研通AI6应助淡淡姿采纳,获得10
12秒前
怡然梦竹发布了新的文献求助10
12秒前
12秒前
汉堡包应助Ethan采纳,获得10
13秒前
王1发布了新的文献求助10
13秒前
科研通AI6应助香菜头采纳,获得10
13秒前
隐形曼青应助尺素寸心采纳,获得10
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715