Optimizing enzyme thermostability by combining multiple mutations using protein language model

热稳定性 上位性 突变体 点突变 定向进化 蛋白质工程 突变 突变 合理设计 计算生物学 遗传学 生物 生物化学 基因
作者
Jiahao Bian,Pan Tan,Ting Nie,Liang Hong,Guangyu Yang
标识
DOI:10.1002/mlf2.12151
摘要

Abstract Optimizing enzyme thermostability is essential for advancements in protein science and industrial applications. Currently, (semi‐)rational design and random mutagenesis methods can accurately identify single‐point mutations that enhance enzyme thermostability. However, complex epistatic interactions often arise when multiple mutation sites are combined, leading to the complete inactivation of combinatorial mutants. As a result, constructing an optimized enzyme often requires repeated rounds of design to incrementally incorporate single mutation sites, which is highly time‐consuming. In this study, we developed an AI‐aided strategy for enzyme thermostability engineering that efficiently facilitates the recombination of beneficial single‐point mutations. We utilized thermostability data from creatinase, including 18 single‐point mutants, 22 double‐point mutants, 21 triple‐point mutants, and 12 quadruple‐point mutants. Using these data as inputs, we used a temperature‐guided protein language model, Pro‐PRIME, to learn epistatic features and design combinatorial mutants. After two rounds of design, we obtained 50 combinatorial mutants with superior thermostability, achieving a success rate of 100%. The best mutant, 13M4, contained 13 mutation sites and maintained nearly full catalytic activity compared to the wild‐type. It showed a 10.19°C increase in the melting temperature and an ~655‐fold increase in the half‐life at 58°C. Additionally, the model successfully captured epistasis in high‐order combinatorial mutants, including sign epistasis (K351E) and synergistic epistasis (D17V/I149V). We elucidated the mechanism of long‐range epistasis in detail using a dynamics cross‐correlation matrix method. Our work provides an efficient framework for designing enzyme thermostability and studying high‐order epistatic effects in protein‐directed evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助心灵美的老四采纳,获得10
1秒前
4秒前
甘牡娟完成签到,获得积分10
4秒前
5秒前
完美世界应助漂亮白枫采纳,获得10
6秒前
7秒前
Dream发布了新的文献求助10
7秒前
HCLonely应助端庄的正豪采纳,获得10
7秒前
7秒前
8秒前
9秒前
11秒前
大蒜君发布了新的文献求助10
11秒前
11秒前
狂野白梅发布了新的文献求助10
11秒前
11秒前
NexusExplorer应助蝎子莱莱采纳,获得10
11秒前
11秒前
12秒前
心灵美的老四完成签到,获得积分10
12秒前
大眼的平松完成签到,获得积分10
13秒前
Baraka完成签到,获得积分10
13秒前
14秒前
zcg发布了新的文献求助10
14秒前
Aile。发布了新的文献求助10
15秒前
沐11完成签到 ,获得积分10
15秒前
Guo发布了新的文献求助10
17秒前
17秒前
17秒前
19秒前
ding应助明亮的智宸采纳,获得10
20秒前
CCD发布了新的文献求助10
20秒前
lumanman发布了新的文献求助10
22秒前
22秒前
甜蜜的海瑶完成签到 ,获得积分10
22秒前
丰知然举报纯真雁菱求助涉嫌违规
24秒前
25秒前
25秒前
Dream完成签到,获得积分10
26秒前
西瓜完成签到 ,获得积分10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299957
求助须知:如何正确求助?哪些是违规求助? 2934810
关于积分的说明 8470613
捐赠科研通 2608363
什么是DOI,文献DOI怎么找? 1424166
科研通“疑难数据库(出版商)”最低求助积分说明 661873
邀请新用户注册赠送积分活动 645611