Optimizing enzyme thermostability by combining multiple mutations using protein language model

热稳定性 化学 计算生物学 计算机科学 生物 生物化学
作者
Jiahao Bian,Pan Tan,Ting Nie,Liang Hong,Guangyu Yang
标识
DOI:10.1002/mlf2.12151
摘要

Optimizing enzyme thermostability is essential for advancements in protein science and industrial applications. Currently, (semi-)rational design and random mutagenesis methods can accurately identify single-point mutations that enhance enzyme thermostability. However, complex epistatic interactions often arise when multiple mutation sites are combined, leading to the complete inactivation of combinatorial mutants. As a result, constructing an optimized enzyme often requires repeated rounds of design to incrementally incorporate single mutation sites, which is highly time-consuming. In this study, we developed an AI-aided strategy for enzyme thermostability engineering that efficiently facilitates the recombination of beneficial single-point mutations. We utilized thermostability data from creatinase, including 18 single-point mutants, 22 double-point mutants, 21 triple-point mutants, and 12 quadruple-point mutants. Using these data as inputs, we used a temperature-guided protein language model, Pro-PRIME, to learn epistatic features and design combinatorial mutants. After two rounds of design, we obtained 50 combinatorial mutants with superior thermostability, achieving a success rate of 100%. The best mutant, 13M4, contained 13 mutation sites and maintained nearly full catalytic activity compared to the wild-type. It showed a 10.19°C increase in the melting temperature and an ~655-fold increase in the half-life at 58°C. Additionally, the model successfully captured epistasis in high-order combinatorial mutants, including sign epistasis (K351E) and synergistic epistasis (D17V/I149V). We elucidated the mechanism of long-range epistasis in detail using a dynamics cross-correlation matrix method. Our work provides an efficient framework for designing enzyme thermostability and studying high-order epistatic effects in protein-directed evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助老地方采纳,获得10
刚刚
lxl完成签到,获得积分10
刚刚
舒适的尔容完成签到,获得积分20
刚刚
zds发布了新的文献求助10
1秒前
小七发布了新的文献求助10
1秒前
1秒前
要多喝水发布了新的文献求助50
2秒前
CipherSage应助yqsf789采纳,获得10
2秒前
2秒前
明理的蜗牛完成签到,获得积分10
2秒前
雨灵发布了新的文献求助10
2秒前
丘比特应助安然采纳,获得10
3秒前
111111发布了新的文献求助10
3秒前
乐乐应助喜悦的铭采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
gxcfdc发布了新的文献求助30
5秒前
Leon完成签到,获得积分10
6秒前
浮游应助小蚂蚁采纳,获得10
7秒前
归尘发布了新的文献求助20
7秒前
8秒前
9秒前
a怪完成签到,获得积分10
10秒前
香蕉觅云应助鱼辞采纳,获得10
10秒前
酷炫的万天完成签到,获得积分20
11秒前
11秒前
希淇完成签到 ,获得积分10
11秒前
linmu发布了新的文献求助10
11秒前
科研的神发布了新的文献求助10
12秒前
zds完成签到,获得积分10
14秒前
安然发布了新的文献求助10
16秒前
Yolen LI完成签到,获得积分10
17秒前
17秒前
18秒前
英俊的铭应助TAC采纳,获得10
18秒前
18秒前
浮游应助沉默清采纳,获得10
19秒前
畅快黎昕完成签到,获得积分10
21秒前
鱼浅浅完成签到,获得积分10
22秒前
李琼琼完成签到 ,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425046
求助须知:如何正确求助?哪些是违规求助? 4539189
关于积分的说明 14166098
捐赠科研通 4456315
什么是DOI,文献DOI怎么找? 2444120
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412492