Optimizing enzyme thermostability by combining multiple mutations using protein language model

热稳定性 化学 计算生物学 计算机科学 生物 生物化学
作者
Jiahao Bian,Pan Tan,Ting Nie,Liang Hong,Guangyu Yang
标识
DOI:10.1002/mlf2.12151
摘要

Optimizing enzyme thermostability is essential for advancements in protein science and industrial applications. Currently, (semi-)rational design and random mutagenesis methods can accurately identify single-point mutations that enhance enzyme thermostability. However, complex epistatic interactions often arise when multiple mutation sites are combined, leading to the complete inactivation of combinatorial mutants. As a result, constructing an optimized enzyme often requires repeated rounds of design to incrementally incorporate single mutation sites, which is highly time-consuming. In this study, we developed an AI-aided strategy for enzyme thermostability engineering that efficiently facilitates the recombination of beneficial single-point mutations. We utilized thermostability data from creatinase, including 18 single-point mutants, 22 double-point mutants, 21 triple-point mutants, and 12 quadruple-point mutants. Using these data as inputs, we used a temperature-guided protein language model, Pro-PRIME, to learn epistatic features and design combinatorial mutants. After two rounds of design, we obtained 50 combinatorial mutants with superior thermostability, achieving a success rate of 100%. The best mutant, 13M4, contained 13 mutation sites and maintained nearly full catalytic activity compared to the wild-type. It showed a 10.19°C increase in the melting temperature and an ~655-fold increase in the half-life at 58°C. Additionally, the model successfully captured epistasis in high-order combinatorial mutants, including sign epistasis (K351E) and synergistic epistasis (D17V/I149V). We elucidated the mechanism of long-range epistasis in detail using a dynamics cross-correlation matrix method. Our work provides an efficient framework for designing enzyme thermostability and studying high-order epistatic effects in protein-directed evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Millie完成签到 ,获得积分10
1秒前
1秒前
香辣鸡腿堡完成签到,获得积分20
1秒前
忘多发布了新的文献求助10
2秒前
科研通AI2S应助燕山黑驴采纳,获得10
2秒前
NN应助烂漫夜梦采纳,获得10
3秒前
北北北发布了新的文献求助10
3秒前
科研通AI6应助瓜皮糖浆采纳,获得10
4秒前
4秒前
沐雨完成签到,获得积分20
4秒前
HOXXXiii完成签到,获得积分10
4秒前
七七发布了新的文献求助10
4秒前
科研土狗发布了新的文献求助30
5秒前
沐雨发布了新的文献求助10
6秒前
大模型应助迷人夏槐采纳,获得10
7秒前
nyota完成签到,获得积分10
8秒前
Suchus完成签到,获得积分20
8秒前
鹿璟璟完成签到,获得积分10
9秒前
科研顺利发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
英姑应助xiaoyan采纳,获得20
11秒前
华莱士小怪完成签到,获得积分10
12秒前
12秒前
12秒前
共享精神应助Annlucy采纳,获得10
13秒前
seven发布了新的文献求助10
13秒前
kavins凯旋发布了新的文献求助10
14秒前
FashionBoy应助风中的小鸽子采纳,获得10
14秒前
马鑫燚完成签到,获得积分10
14秒前
踏实雪一发布了新的文献求助10
14秒前
肖十七完成签到,获得积分10
14秒前
14秒前
你好棒呀完成签到,获得积分10
15秒前
shuang0116发布了新的文献求助10
16秒前
吴彦祖发布了新的文献求助10
17秒前
18秒前
秋白完成签到,获得积分10
19秒前
隐形念之完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461185
求助须知:如何正确求助?哪些是违规求助? 4566221
关于积分的说明 14304031
捐赠科研通 4491948
什么是DOI,文献DOI怎么找? 2460543
邀请新用户注册赠送积分活动 1449837
关于科研通互助平台的介绍 1425582