生物圈
生态系统
土地覆盖
计算机科学
结构化
地球观测
事件(粒子物理)
地球系统科学
气候变化
遥感
环境科学
卫星
数据挖掘
地球科学
土地利用
地理
生态学
地质学
物理
工程类
财务
航空航天工程
经济
生物
量子力学
作者
Chaonan Ji,Tonio Fincke,Vitus Benson,Gustau Camps‐Valls,Miguel‐Ángel Fernández‐Torres,Fabian Gans,Guido Kraemer,Francesco Martinuzzi,David Montero,Karin Mora,Oscar J. Pellicer‐Valero,Claire Nicolle Robin,Maximilian Söchting,Mélanie Weynants,Miguel D. Mahecha
标识
DOI:10.1038/s41597-025-04447-5
摘要
Abstract With climate extremes’ rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models. Despite recent progress in deep learning to ecosystem monitoring, there is a need for datasets specifically designed to analyse compound heatwave and drought extreme impact. Here, we introduce the DeepExtremeCubes database, tailored to map around these extremes, focusing on persistent natural vegetation. It comprises over 40,000 globally sampled small data cubes (i.e. minicubes), with a spatial coverage of 2.5 by 2.5 km. Each minicube includes (i) Sentinel-2 L2A images, (ii) ERA5-Land variables and generated extreme event cube covering 2016 to 2022, and (iii) ancillary land cover and topography maps. The paper aims to (1) streamline data accessibility, structuring, pre-processing, and enhance scientific reproducibility, and (2) facilitate biosphere dynamics forecasting in response to compound extremes.
科研通智能强力驱动
Strongly Powered by AbleSci AI