清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bayesian Architecture for Predictive Monitoring of Unbalance Faults in a Turbine Rotor–Bearing System

方位(导航) 残余物 状态监测 马尔科夫蒙特卡洛 转子(电动) 断层(地质) 工程类 涡轮机 控制理论(社会学) 贝叶斯推理 计算机科学 故障检测与隔离 马尔可夫链 控制工程 贝叶斯概率 人工智能 机器学习 算法 执行机构 电气工程 地质学 地震学 机械工程 控制(管理)
作者
Banalata Bera,Shyh‐Chin Huang,Po Ting Lin,Yu-Jen Chiu,Jin-Wei Liang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (24): 8123-8123
标识
DOI:10.3390/s24248123
摘要

Unbalance faults are among the common causes of interruptions and unexpected failures in rotary systems. Therefore, monitoring unbalance faults is essential for predictive maintenance. While conventional time-invariant mathematical models can assess the impact of these faults, they often rely on proper assumptions of system factors like bearing stiffness and damping characteristics. In reality, continuous high-speed operation and environmental factors like load variations cause these parameters to change. This work presents a novel architecture for unbalance fault monitoring and prognosis, in which the bearing parameters are treated as variables that change with operating conditions. This enables the development of a more reliable mathematical model for continuous monitoring and prognosis of unbalance faults in rotor systems. This Bayesian inference framework uses Markov Chain Monte Carlo (MCMC) sampling to identify dynamic bearing parameters. Specifically, the Metropolis algorithm is employed to systematically evaluate the range of acceptable parameter values within the framework. A novel dual-MCMC loops explore and assess the parameter space, resulting in more accurate and reliable bearing parameter estimations. These updated parameters improve the demonstrated turbine rotor–bearing system’s unbalance assessment up to 74.48% of the residual error compared to models with fixed parameters. This validates the Bayesian framework for predictive monitoring and maintenance-oriented solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
披着羊皮的狼完成签到 ,获得积分10
2秒前
9秒前
28秒前
随心所欲完成签到 ,获得积分10
33秒前
41秒前
nbtzy完成签到,获得积分10
46秒前
46秒前
54秒前
宅心仁厚完成签到 ,获得积分10
1分钟前
1分钟前
精明寒松完成签到 ,获得积分10
1分钟前
半喇柯基发布了新的文献求助10
1分钟前
Gary完成签到 ,获得积分10
2分钟前
Demi_Ming完成签到,获得积分10
2分钟前
2分钟前
fhw完成签到 ,获得积分10
2分钟前
aero完成签到 ,获得积分10
2分钟前
2分钟前
SCH_zhu发布了新的文献求助10
2分钟前
SCH_zhu完成签到,获得积分10
2分钟前
Criminology34完成签到,获得积分0
3分钟前
John完成签到,获得积分10
3分钟前
4分钟前
大西发布了新的文献求助10
4分钟前
Una完成签到,获得积分10
4分钟前
直率若烟完成签到 ,获得积分10
4分钟前
酷酷海豚完成签到,获得积分10
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
桃子爱学习给桃子爱学习的求助进行了留言
4分钟前
muriel完成签到,获得积分0
4分钟前
大西完成签到,获得积分10
4分钟前
如歌完成签到,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
满意的伊完成签到,获得积分10
5分钟前
ADcal完成签到 ,获得积分10
5分钟前
开心的瘦子完成签到,获得积分10
6分钟前
6分钟前
ricky发布了新的文献求助10
6分钟前
蝎子莱莱xth完成签到,获得积分10
6分钟前
浮游应助ricky采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303286
求助须知:如何正确求助?哪些是违规求助? 4450158
关于积分的说明 13849104
捐赠科研通 4336792
什么是DOI,文献DOI怎么找? 2381094
邀请新用户注册赠送积分活动 1376083
关于科研通互助平台的介绍 1342675