亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bayesian Architecture for Predictive Monitoring of Unbalance Faults in a Turbine Rotor–Bearing System

方位(导航) 残余物 状态监测 马尔科夫蒙特卡洛 转子(电动) 断层(地质) 工程类 涡轮机 控制理论(社会学) 贝叶斯推理 计算机科学 故障检测与隔离 马尔可夫链 控制工程 贝叶斯概率 人工智能 机器学习 算法 执行机构 电气工程 地质学 地震学 机械工程 控制(管理)
作者
Banalata Bera,Shyh‐Chin Huang,Po Ting Lin,Yu-Jen Chiu,Jin-Wei Liang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (24): 8123-8123
标识
DOI:10.3390/s24248123
摘要

Unbalance faults are among the common causes of interruptions and unexpected failures in rotary systems. Therefore, monitoring unbalance faults is essential for predictive maintenance. While conventional time-invariant mathematical models can assess the impact of these faults, they often rely on proper assumptions of system factors like bearing stiffness and damping characteristics. In reality, continuous high-speed operation and environmental factors like load variations cause these parameters to change. This work presents a novel architecture for unbalance fault monitoring and prognosis, in which the bearing parameters are treated as variables that change with operating conditions. This enables the development of a more reliable mathematical model for continuous monitoring and prognosis of unbalance faults in rotor systems. This Bayesian inference framework uses Markov Chain Monte Carlo (MCMC) sampling to identify dynamic bearing parameters. Specifically, the Metropolis algorithm is employed to systematically evaluate the range of acceptable parameter values within the framework. A novel dual-MCMC loops explore and assess the parameter space, resulting in more accurate and reliable bearing parameter estimations. These updated parameters improve the demonstrated turbine rotor–bearing system’s unbalance assessment up to 74.48% of the residual error compared to models with fixed parameters. This validates the Bayesian framework for predictive monitoring and maintenance-oriented solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
VDC应助科研通管家采纳,获得30
11秒前
VDC应助科研通管家采纳,获得30
11秒前
VDC应助科研通管家采纳,获得30
11秒前
25秒前
量子星尘发布了新的文献求助10
38秒前
39秒前
1分钟前
1分钟前
鱿鱼起司发布了新的文献求助10
1分钟前
1分钟前
1分钟前
VDC应助科研通管家采纳,获得30
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
2分钟前
安青兰完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
安年完成签到 ,获得积分10
4分钟前
4分钟前
汉堡包应助王王碎冰冰采纳,获得10
4分钟前
5分钟前
555557发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
555557完成签到,获得积分10
5分钟前
5分钟前
6分钟前
王王碎冰冰关注了科研通微信公众号
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
天天快乐应助111采纳,获得20
6分钟前
FJXTY发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472833
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553