Machine Learning to Predict the Individual Risk of Treatment-Relevant Toxicity for Patients With Breast Cancer Undergoing Neoadjuvant Systemic Treatment

医学 乳腺癌 毒性 养生 中性粒细胞减少症 内科学 机器学习 癌症 队列 肿瘤科 计算机科学
作者
Lie Cai,Thomas M. Deutsch,Chris Sidey‐Gibbons,Michelle Kobel,Fabian Riedel,Katharina Smetanay,Carlo Fremd,Laura L. Michel,Michael Golatta,Joerg Heil,Andreas Schneeweiß,André Pfob
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8)
标识
DOI:10.1200/cci.24.00010
摘要

PURPOSE Toxicity to systemic cancer treatment represents a major anxiety for patients and a challenge to treatment plans. We aimed to develop machine learning algorithms for the upfront prediction of an individual's risk of experiencing treatment-relevant toxicity during the course of treatment. METHODS Clinical records were retrieved from a single-center, consecutive cohort of patients who underwent neoadjuvant treatment for early breast cancer. We developed and validated machine learning algorithms to predict grade 3 or 4 toxicity (anemia, neutropenia, deviation of liver enzymes, nephrotoxicity, thrombopenia, electrolyte disturbance, or neuropathy). We used 10-fold cross-validation to develop two algorithms (logistic regression with elastic net penalty [GLM] and support vector machines [SVMs]). Algorithm predictions were compared with documented toxicity events and diagnostic performance was evaluated via area under the curve (AUROC). RESULTS A total of 590 patients were identified, 432 in the development set and 158 in the validation set. The median age was 51 years, and 55.8% (329 of 590) experienced grade 3 or 4 toxicity. The performance improved significantly when adding referenced treatment information (referenced regimen, referenced summation dose intensity product) in addition to patient and tumor variables: GLM AUROC 0.59 versus 0.75, P = .02; SVM AUROC 0.64 versus 0.75, P = .01. CONCLUSION The individual risk of treatment-relevant toxicity can be predicted using machine learning algorithms. We demonstrate a promising way to improve efficacy and facilitate proactive toxicity management of systemic cancer treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
小蘑菇应助科研狂人采纳,获得10
1秒前
研友_5Y9Z75完成签到 ,获得积分0
1秒前
1秒前
1秒前
周少完成签到,获得积分10
2秒前
2秒前
李迅迅发布了新的文献求助10
2秒前
科研通AI2S应助felicity采纳,获得10
2秒前
媛肖驳回了有人应助
2秒前
醉清风完成签到 ,获得积分10
3秒前
黄科研完成签到,获得积分10
3秒前
出其东门发布了新的文献求助20
4秒前
斐乐完成签到,获得积分10
4秒前
小手冰凉完成签到,获得积分10
4秒前
我有魔鬼大头举报ddrose求助涉嫌违规
4秒前
学吗完成签到,获得积分10
4秒前
hfshao完成签到,获得积分10
4秒前
4秒前
心灵美的大地完成签到,获得积分10
4秒前
咪咪完成签到,获得积分10
6秒前
6秒前
大果子完成签到,获得积分10
6秒前
7秒前
贪玩的蛋挞完成签到,获得积分10
7秒前
8秒前
vivre223完成签到,获得积分10
8秒前
sumugeng完成签到,获得积分10
9秒前
小小完成签到,获得积分10
9秒前
爱吃糖炒栗子的鱼完成签到,获得积分10
9秒前
9秒前
无私香彤发布了新的文献求助10
10秒前
ZHANG完成签到 ,获得积分10
10秒前
贤yu完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
务实映之完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773811
求助须知:如何正确求助?哪些是违规求助? 5613858
关于积分的说明 15432836
捐赠科研通 4906205
什么是DOI,文献DOI怎么找? 2640110
邀请新用户注册赠送积分活动 1587960
关于科研通互助平台的介绍 1543002