Machine Learning to Predict the Individual Risk of Treatment-Relevant Toxicity for Patients With Breast Cancer Undergoing Neoadjuvant Systemic Treatment

医学 乳腺癌 毒性 养生 中性粒细胞减少症 内科学 机器学习 癌症 队列 肿瘤科 计算机科学
作者
Lie Cai,Thomas M. Deutsch,Chris Sidey‐Gibbons,Michelle Kobel,Fabian Riedel,Katharina Smetanay,Carlo Fremd,Laura L. Michel,Michael Golatta,Joerg Heil,Andreas Schneeweiß,André Pfob
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8)
标识
DOI:10.1200/cci.24.00010
摘要

PURPOSE Toxicity to systemic cancer treatment represents a major anxiety for patients and a challenge to treatment plans. We aimed to develop machine learning algorithms for the upfront prediction of an individual's risk of experiencing treatment-relevant toxicity during the course of treatment. METHODS Clinical records were retrieved from a single-center, consecutive cohort of patients who underwent neoadjuvant treatment for early breast cancer. We developed and validated machine learning algorithms to predict grade 3 or 4 toxicity (anemia, neutropenia, deviation of liver enzymes, nephrotoxicity, thrombopenia, electrolyte disturbance, or neuropathy). We used 10-fold cross-validation to develop two algorithms (logistic regression with elastic net penalty [GLM] and support vector machines [SVMs]). Algorithm predictions were compared with documented toxicity events and diagnostic performance was evaluated via area under the curve (AUROC). RESULTS A total of 590 patients were identified, 432 in the development set and 158 in the validation set. The median age was 51 years, and 55.8% (329 of 590) experienced grade 3 or 4 toxicity. The performance improved significantly when adding referenced treatment information (referenced regimen, referenced summation dose intensity product) in addition to patient and tumor variables: GLM AUROC 0.59 versus 0.75, P = .02; SVM AUROC 0.64 versus 0.75, P = .01. CONCLUSION The individual risk of treatment-relevant toxicity can be predicted using machine learning algorithms. We demonstrate a promising way to improve efficacy and facilitate proactive toxicity management of systemic cancer treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助kmy采纳,获得10
刚刚
6秒前
Yziii应助感性的觅夏采纳,获得20
6秒前
12345发布了新的文献求助50
6秒前
隐形曼青应助毛123采纳,获得10
7秒前
7秒前
hj456完成签到,获得积分10
8秒前
10秒前
dan发布了新的文献求助20
10秒前
11秒前
咿呀发布了新的文献求助10
11秒前
大模型应助hanleiharry1采纳,获得30
12秒前
一罐樱桃酱完成签到,获得积分10
12秒前
莫道发布了新的文献求助10
13秒前
13秒前
多多多完成签到 ,获得积分10
13秒前
14秒前
12Yohann完成签到,获得积分10
14秒前
hsialy发布了新的文献求助20
15秒前
实现零完成签到 ,获得积分10
17秒前
17秒前
张养浩完成签到 ,获得积分10
17秒前
19秒前
1033sry完成签到,获得积分10
20秒前
山山而川应助ll采纳,获得10
20秒前
失忆的金鱼应助UGO采纳,获得10
21秒前
虎虎生威完成签到,获得积分10
21秒前
顾矜应助1111采纳,获得10
22秒前
22秒前
Owen应助ertredffg采纳,获得10
25秒前
25秒前
向日葵完成签到,获得积分10
27秒前
27秒前
courage完成签到 ,获得积分10
27秒前
霍夫曼降解完成签到,获得积分10
29秒前
桐桐应助Finger采纳,获得10
29秒前
sa完成签到,获得积分10
30秒前
30秒前
31秒前
ll完成签到 ,获得积分10
33秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262821
求助须知:如何正确求助?哪些是违规求助? 2903462
关于积分的说明 8325396
捐赠科研通 2573481
什么是DOI,文献DOI怎么找? 1398328
科研通“疑难数据库(出版商)”最低求助积分说明 654136
邀请新用户注册赠送积分活动 632686