Machine Learning to Predict the Individual Risk of Treatment-Relevant Toxicity for Patients With Breast Cancer Undergoing Neoadjuvant Systemic Treatment

医学 乳腺癌 毒性 养生 中性粒细胞减少症 内科学 机器学习 癌症 队列 肿瘤科 计算机科学
作者
Lie Cai,Thomas M. Deutsch,Chris Sidey‐Gibbons,Michelle Kobel,Fabian Riedel,Katharina Smetanay,Carlo Fremd,Laura L. Michel,Michael Golatta,Joerg Heil,Andreas Schneeweiß,André Pfob
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8)
标识
DOI:10.1200/cci.24.00010
摘要

PURPOSE Toxicity to systemic cancer treatment represents a major anxiety for patients and a challenge to treatment plans. We aimed to develop machine learning algorithms for the upfront prediction of an individual's risk of experiencing treatment-relevant toxicity during the course of treatment. METHODS Clinical records were retrieved from a single-center, consecutive cohort of patients who underwent neoadjuvant treatment for early breast cancer. We developed and validated machine learning algorithms to predict grade 3 or 4 toxicity (anemia, neutropenia, deviation of liver enzymes, nephrotoxicity, thrombopenia, electrolyte disturbance, or neuropathy). We used 10-fold cross-validation to develop two algorithms (logistic regression with elastic net penalty [GLM] and support vector machines [SVMs]). Algorithm predictions were compared with documented toxicity events and diagnostic performance was evaluated via area under the curve (AUROC). RESULTS A total of 590 patients were identified, 432 in the development set and 158 in the validation set. The median age was 51 years, and 55.8% (329 of 590) experienced grade 3 or 4 toxicity. The performance improved significantly when adding referenced treatment information (referenced regimen, referenced summation dose intensity product) in addition to patient and tumor variables: GLM AUROC 0.59 versus 0.75, P = .02; SVM AUROC 0.64 versus 0.75, P = .01. CONCLUSION The individual risk of treatment-relevant toxicity can be predicted using machine learning algorithms. We demonstrate a promising way to improve efficacy and facilitate proactive toxicity management of systemic cancer treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助jjj采纳,获得10
刚刚
刚刚
钮水香完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
咖啡豆完成签到,获得积分10
1秒前
王艺霖发布了新的文献求助10
1秒前
欣喜代秋完成签到,获得积分10
2秒前
2秒前
2秒前
小青椒应助果汁采纳,获得50
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
niudayun给niudayun的求助进行了留言
3秒前
王括完成签到,获得积分20
3秒前
SIC发布了新的文献求助10
3秒前
怂怂发布了新的文献求助10
4秒前
共享精神应助gyq采纳,获得10
4秒前
4秒前
adeno发布了新的文献求助10
4秒前
4秒前
粗暴的达发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
清爽映之完成签到,获得积分10
5秒前
发财牛女发布了新的文献求助10
5秒前
墨与笙完成签到,获得积分10
6秒前
6秒前
121314wld发布了新的文献求助10
6秒前
JamesPei应助高高千万采纳,获得20
7秒前
早期早睡发布了新的文献求助10
7秒前
66发布了新的文献求助30
7秒前
小迷糊完成签到 ,获得积分10
7秒前
大模型应助wzx采纳,获得10
7秒前
妩媚的海应助WStarry采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731