FMambaIR: A Hybrid State Space Model and Frequency Domain for Image Restoration

频域 图像复原 计算机科学 图像(数学) 遥感 计算机视觉 人工智能 图像处理 地质学
作者
Xin Luan,Huijie Fan,Qiang Wang,Nan Yang,Shiben Liu,Xiaofeng Li,Yandong Tang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3526927
摘要

With the development of deep learning, impressive progress has been made in the field of image restoration. The existing methods mainly rely on CNN and Transformer to obtain multi-scale feature information. However, these methods rarely integrate frequency domain information effectively during feature extraction, limiting their performance in image restoration. Additionally, few have combined Mamba with the Fourier domain for image restoration, which limits Mamba's ability to perceive global degradation in the frequency domain. Therefore, we propose a new image restoration model called FMambaIR, which utilizes the complementarity between frequency and Mamba for image restoration. The core of FMambaIR is the F-Mamba block, which combines Fourier transform and Mamba for global degradation perception modeling. Specifically, F-Mamba adopts a dual branch complementary structure, including spatial Mamba branches and Fourier frequency domain global modeling. Mamba models the long-range dependencies of the entire image features, and the frequency branch utilizes Fourier to extract global degraded features from the image. Finally, we use a forward feedback network to integrate local information, which is beneficial for improving the recovery details. We comprehensively evaluate FMambaIR on several image restoration tasks, including underwater image enhancement, remote sensing image dehazing, and low-light image enhancement. The experimental results demonstrate that FMambaIR not only achieves superior performance compared to state-of-the-art methods but also significantly reduces computational complexity. Our code is available at https://github.com/mickoluan/FMambaIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的莫言完成签到,获得积分10
1秒前
lin发布了新的文献求助10
2秒前
aero完成签到 ,获得积分10
4秒前
123号完成签到,获得积分10
6秒前
充电宝应助TT采纳,获得10
8秒前
9秒前
9秒前
英姑应助荒野星辰采纳,获得10
11秒前
11秒前
YHY完成签到,获得积分10
13秒前
科研通AI5应助魏伯安采纳,获得10
13秒前
caoyy发布了新的文献求助10
13秒前
14秒前
15秒前
张喻235532完成签到,获得积分10
16秒前
失眠虔纹发布了新的文献求助10
17秒前
香蕉觅云应助糊涂的小伙采纳,获得10
17秒前
17秒前
sutharsons应助科研通管家采纳,获得200
19秒前
打打应助科研通管家采纳,获得10
19秒前
axin应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
无花果应助科研通管家采纳,获得10
19秒前
19秒前
李健应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
20秒前
lu应助科研通管家采纳,获得10
20秒前
20秒前
华仔应助科研通管家采纳,获得10
20秒前
研友_MLJldZ发布了新的文献求助10
20秒前
wys完成签到 ,获得积分10
21秒前
22秒前
michaelvin完成签到,获得积分10
22秒前
学术大白完成签到 ,获得积分10
25秒前
25秒前
SYT完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849