FMambaIR: A Hybrid State Space Model and Frequency Domain for Image Restoration

频域 图像复原 计算机科学 图像(数学) 遥感 计算机视觉 人工智能 图像处理 地质学
作者
Xin Luan,Huijie Fan,Qiang Wang,Nan Yang,Shiben Liu,Xiaofeng Li,Yandong Tang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3526927
摘要

With the development of deep learning, impressive progress has been made in the field of image restoration. The existing methods mainly rely on CNN and Transformer to obtain multi-scale feature information. However, these methods rarely integrate frequency domain information effectively during feature extraction, limiting their performance in image restoration. Additionally, few have combined Mamba with the Fourier domain for image restoration, which limits Mamba's ability to perceive global degradation in the frequency domain. Therefore, we propose a new image restoration model called FMambaIR, which utilizes the complementarity between frequency and Mamba for image restoration. The core of FMambaIR is the F-Mamba block, which combines Fourier transform and Mamba for global degradation perception modeling. Specifically, F-Mamba adopts a dual branch complementary structure, including spatial Mamba branches and Fourier frequency domain global modeling. Mamba models the long-range dependencies of the entire image features, and the frequency branch utilizes Fourier to extract global degraded features from the image. Finally, we use a forward feedback network to integrate local information, which is beneficial for improving the recovery details. We comprehensively evaluate FMambaIR on several image restoration tasks, including underwater image enhancement, remote sensing image dehazing, and low-light image enhancement. The experimental results demonstrate that FMambaIR not only achieves superior performance compared to state-of-the-art methods but also significantly reduces computational complexity. Our code is available at https://github.com/mickoluan/FMambaIR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
缪夜蕾完成签到,获得积分10
2秒前
直率香寒发布了新的文献求助10
2秒前
炼丹发布了新的文献求助10
2秒前
jinying发布了新的文献求助10
3秒前
水悟子完成签到,获得积分10
3秒前
彭于晏应助lh采纳,获得10
4秒前
桐桐应助adinike采纳,获得10
5秒前
5秒前
彳亍完成签到 ,获得积分10
5秒前
隐形曼青应助Dormantparner采纳,获得10
7秒前
9秒前
9秒前
领导范儿应助直率香寒采纳,获得10
9秒前
所所应助无奈梦岚采纳,获得10
10秒前
DINGJIELUO发布了新的文献求助10
10秒前
11秒前
Eva完成签到,获得积分10
12秒前
tao关闭了tao文献求助
12秒前
pp完成签到 ,获得积分10
14秒前
14秒前
张光光完成签到 ,获得积分10
15秒前
NXK发布了新的文献求助10
15秒前
17秒前
lalalalala发布了新的文献求助10
17秒前
李健应助西交生医采纳,获得10
18秒前
科研通AI2S应助整齐醉冬采纳,获得10
20秒前
20秒前
22秒前
22秒前
激情的函发布了新的文献求助10
23秒前
无花果应助lalalalala采纳,获得10
23秒前
极度厌蠢应助gaint采纳,获得20
23秒前
CodeCraft应助gaint采纳,获得10
23秒前
一一应助狂野世立采纳,获得10
25秒前
26秒前
大胆短靴完成签到,获得积分10
26秒前
26秒前
27秒前
Elvira发布了新的文献求助10
28秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349498
求助须知:如何正确求助?哪些是违规求助? 2975547
关于积分的说明 8669764
捐赠科研通 2656354
什么是DOI,文献DOI怎么找? 1454554
科研通“疑难数据库(出版商)”最低求助积分说明 673381
邀请新用户注册赠送积分活动 663821