FMambaIR: A Hybrid State Space Model and Frequency Domain for Image Restoration

频域 图像复原 计算机科学 图像(数学) 遥感 计算机视觉 人工智能 图像处理 地质学
作者
Xin Luan,Huijie Fan,Qiang Wang,Nan Yang,Shiben Liu,Xiaofeng Li,Yandong Tang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3526927
摘要

With the development of deep learning, impressive progress has been made in the field of image restoration. The existing methods mainly rely on CNN and Transformer to obtain multi-scale feature information. However, these methods rarely integrate frequency domain information effectively during feature extraction, limiting their performance in image restoration. Additionally, few have combined Mamba with the Fourier domain for image restoration, which limits Mamba's ability to perceive global degradation in the frequency domain. Therefore, we propose a new image restoration model called FMambaIR, which utilizes the complementarity between frequency and Mamba for image restoration. The core of FMambaIR is the F-Mamba block, which combines Fourier transform and Mamba for global degradation perception modeling. Specifically, F-Mamba adopts a dual branch complementary structure, including spatial Mamba branches and Fourier frequency domain global modeling. Mamba models the long-range dependencies of the entire image features, and the frequency branch utilizes Fourier to extract global degraded features from the image. Finally, we use a forward feedback network to integrate local information, which is beneficial for improving the recovery details. We comprehensively evaluate FMambaIR on several image restoration tasks, including underwater image enhancement, remote sensing image dehazing, and low-light image enhancement. The experimental results demonstrate that FMambaIR not only achieves superior performance compared to state-of-the-art methods but also significantly reduces computational complexity. Our code is available at https://github.com/mickoluan/FMambaIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助和谐的阁采纳,获得10
刚刚
ljyimu完成签到,获得积分10
刚刚
JW关闭了JW文献求助
1秒前
bingo发布了新的文献求助10
2秒前
司空豁发布了新的文献求助10
2秒前
求助完成签到,获得积分10
2秒前
Orange应助小十七果采纳,获得10
3秒前
lll发布了新的文献求助10
3秒前
Roy发布了新的文献求助10
3秒前
3秒前
NanArtist完成签到,获得积分10
4秒前
Twilight完成签到,获得积分10
4秒前
wu8577应助港崽宝宝采纳,获得10
6秒前
Booty发布了新的文献求助10
6秒前
李健的小迷弟应助清新的Q采纳,获得10
7秒前
WTaMi发布了新的文献求助10
7秒前
8秒前
慕青应助柔弱的不二采纳,获得10
8秒前
mr_beard完成签到 ,获得积分10
9秒前
Eton完成签到,获得积分10
9秒前
碧蓝丹烟发布了新的文献求助10
10秒前
10秒前
儒雅友绿完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
GAS发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
怎么说应助bingo采纳,获得10
12秒前
橘猫ADD完成签到,获得积分10
12秒前
duduguai发布了新的文献求助30
13秒前
科研助手发布了新的文献求助10
13秒前
13秒前
陌生完成签到 ,获得积分10
13秒前
14秒前
15秒前
Ava应助喻盐采纳,获得10
16秒前
水木应助王大D采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956435
求助须知:如何正确求助?哪些是违规求助? 3502556
关于积分的说明 11108554
捐赠科研通 3233240
什么是DOI,文献DOI怎么找? 1787203
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105