AKT1型
PI3K/AKT/mTOR通路
癌症研究
化学
基底细胞
信号转导
医学
内科学
生物化学
作者
Sathan Raj Natarajan,Vishnu Priya Veeraraghvan,Selvaraj Jayaraman,Giuseppe Minervini,Vincenzo Ronsivalle,Marco Cicciù,Giuseppe Minervini
出处
期刊:Minerva dental and oral science
[Edizioni Minerva Medica]
日期:2025-01-01
标识
DOI:10.23736/s2724-6329.24.04918-0
摘要
Boswellic acid (BA) is a bioactive compound derived from Boswellia trees. This study aims to investigate the anti-cancer properties of BA against KB oral squamous cancer cells and elucidate the underlying mechanisms. Escalating doses of BA were administered to KB cells, and various analyses were conducted using bioinformatic tools such as GEO, GEO2R, and STITCH database. MTT and trypan blue assays has been validated to measure the cytotoxicity by treating BA in KB Cells. Flow cytometry assessed cell cycle progression, apoptosis induction, and metabolic alterations. Network analysis identified relevant signaling pathways, while RT-PCR validated mRNA expression changes. Docking studies by Autodock evaluated beta-BA's binding affinity with mTOR-mediated pathways. BA effectively hindered KB cell progression, inducing G0/G1 phase cell cycle arrest and apoptosis. It also inhibited aerobic glycolysis, a hallmark of oral cancer cells. Network analysis revealed involvement in apoptosis and mTOR targets. RT-PCR confirmed downregulation of genes associated with aerobic glycolysis and apoptosis. Docking studies indicated strong binding between BA and mTOR pathways. BA shows promise in inhibiting KB oral squamous cancer cell growth. These findings underscore its potential as a treatment for oral cancer. Further research and clinical studies are needed to unlock its full therapeutic potential.
科研通智能强力驱动
Strongly Powered by AbleSci AI