超燃冲压发动机
燃烧
煤油
航空航天工程
冲压发动机
燃烧室
比例(比率)
材料科学
环境科学
机械
核工程
物理
热力学
工程类
化学
有机化学
量子力学
作者
Fan Li,Fei Li,Guoyan Zhao,Mingbo Sun,Guangwei Ma,Mingjiang Liu,Chenxiang Zhao
出处
期刊:AIAA Journal
[American Institute of Aeronautics and Astronautics]
日期:2024-11-13
卷期号:: 1-14
摘要
The combustion characteristics in two geometrically similar kerosene-fueled scramjet combustors with mass flow rates of 0.69 and 1.41 kg/s are experimentally investigated to explore the scale effects of flame stabilization at Mach 2.52 condition. As the equivalence ratio increases, the combustion usually changes from weak to intensive to blow-out mode. The weak combustion has little effect on the flow field, whereas the intensive combustion has the opposite effect. The transition combustion tends to occur between different modes. When the single injector is used, compared with the small-scale combustor, intensive combustion cannot occur in the large-scale combustor, and the flame stability range is also narrower. One probable reason is that as the combustor scale increases, the boundary layer becomes relatively thinner, resulting in a smaller low-velocity zone and a faster mainstream velocity at the downstream wall of the cavity, which is not conducive to the flame propagation upstream to form the intensive combustion. After shortening the isolator, all cases with intensive combustion in the small-scale combustor are transformed into weak combustion, further confirming the speculation. Compared to the single injector, the dual injector is required in the large-scale combustor to achieve intensive combustion and a wider flame stability range.
科研通智能强力驱动
Strongly Powered by AbleSci AI