All time-scale decomposition method and its application in gear fault diagnosis

断层(地质) 比例(比率) 分解 计算机科学 地震学 地质学 地理 地图学 化学 有机化学
作者
Zhengyang Cheng,Yu Yang,Niaoqing Hu,Zhe Cheng,Junsheng Cheng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241289873
摘要

Adaptive signal decomposition methods, especially without parameters, have become a popular way of diagnosing mechanical faults due to their capability to process mechanical vibration signals adaptively. Empirical mode decomposition (EMD), local mean decomposition (LMD), and local characteristic-scale decomposition (LCD) are typical parameterless adaptive signal decomposition methods currently applied to mechanical fault diagnosis. All of these methods use extreme points to construct baselines, and the mono-component signals are decomposed from an original signal by multiple sift. However, since these methods define time-scale parameters only through extreme points, they are prone to lose the local feature information of an original signal and lead to mode mixing. Aiming at the above problems, the time-scale parameters is defined by using extreme points and zero crossing points simultaneously in this paper. Therefore, we propose a new adaptive signal decomposition method called all time-scale decomposition (ATD). A complex signal can be adaptively decomposed into multiple independent all time-scale components by the ATD method. The baselines of ATD are constructed jointly by extreme points and zero crossing points, so ATD can extract more local feature information of a signal to suppress the mode mixing. First, the principle of ATD is proposed and the method of determining zero crossing points is introduced in this paper. Then, an empirical formula for compensation factor used to determine zero crossing points is deduced. Finally, ATD is verified by the simulation signals and gear signals, respectively. The results indicate that ATD has stronger mode mixing suppression capability and decomposition performance than EMD, LMD, and LCD, and it can be effectively used for gear fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛马发布了新的文献求助50
刚刚
852应助joossss采纳,获得10
2秒前
3秒前
lixiaojin完成签到,获得积分20
3秒前
高大涵梅完成签到,获得积分20
4秒前
科研通AI2S应助Jiang采纳,获得10
4秒前
陈同学完成签到,获得积分10
5秒前
泡泡茶壶完成签到,获得积分10
5秒前
5秒前
5秒前
笨笨千秋完成签到,获得积分10
5秒前
曾123456完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
Momo完成签到,获得积分10
7秒前
盏盏发布了新的文献求助10
8秒前
always完成签到,获得积分10
8秒前
NXK发布了新的文献求助10
9秒前
香蕉觅云应助Momo采纳,获得10
10秒前
天真的冬瓜完成签到,获得积分10
11秒前
梁惠然关注了科研通微信公众号
12秒前
13秒前
一条咸瑜完成签到 ,获得积分10
13秒前
LiuuLingg602完成签到,获得积分10
14秒前
冰露发布了新的文献求助10
16秒前
17秒前
17秒前
zbq来完成签到,获得积分10
17秒前
18秒前
Oliver发布了新的文献求助10
19秒前
renyi发布了新的文献求助10
19秒前
sunidea发布了新的文献求助10
20秒前
英姑应助默默的含蕾采纳,获得10
21秒前
LU发布了新的文献求助10
21秒前
21秒前
抹茶苔藓完成签到,获得积分10
21秒前
21秒前
浮游应助希音采纳,获得10
21秒前
眠羊完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
丰富绿蝶发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405424
求助须知:如何正确求助?哪些是违规求助? 4523745
关于积分的说明 14095053
捐赠科研通 4437438
什么是DOI,文献DOI怎么找? 2435688
邀请新用户注册赠送积分活动 1427810
关于科研通互助平台的介绍 1406086