All time-scale decomposition method and its application in gear fault diagnosis

断层(地质) 比例(比率) 分解 计算机科学 地震学 地质学 地理 地图学 化学 有机化学
作者
Zhengyang Cheng,Yu Yang,Niaoqing Hu,Zhe Cheng,Junsheng Cheng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241289873
摘要

Adaptive signal decomposition methods, especially without parameters, have become a popular way of diagnosing mechanical faults due to their capability to process mechanical vibration signals adaptively. Empirical mode decomposition (EMD), local mean decomposition (LMD), and local characteristic-scale decomposition (LCD) are typical parameterless adaptive signal decomposition methods currently applied to mechanical fault diagnosis. All of these methods use extreme points to construct baselines, and the mono-component signals are decomposed from an original signal by multiple sift. However, since these methods define time-scale parameters only through extreme points, they are prone to lose the local feature information of an original signal and lead to mode mixing. Aiming at the above problems, the time-scale parameters is defined by using extreme points and zero crossing points simultaneously in this paper. Therefore, we propose a new adaptive signal decomposition method called all time-scale decomposition (ATD). A complex signal can be adaptively decomposed into multiple independent all time-scale components by the ATD method. The baselines of ATD are constructed jointly by extreme points and zero crossing points, so ATD can extract more local feature information of a signal to suppress the mode mixing. First, the principle of ATD is proposed and the method of determining zero crossing points is introduced in this paper. Then, an empirical formula for compensation factor used to determine zero crossing points is deduced. Finally, ATD is verified by the simulation signals and gear signals, respectively. The results indicate that ATD has stronger mode mixing suppression capability and decomposition performance than EMD, LMD, and LCD, and it can be effectively used for gear fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周凡淇发布了新的文献求助10
刚刚
Peng完成签到,获得积分10
1秒前
研友_n0DG7n完成签到,获得积分10
1秒前
2秒前
矮小的凡阳完成签到,获得积分10
4秒前
苹果完成签到,获得积分20
5秒前
GPTea应助洪汉采纳,获得100
6秒前
迷人冥王星完成签到,获得积分10
7秒前
HY完成签到,获得积分10
7秒前
7秒前
KAOKAO完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助50
8秒前
8秒前
8秒前
9秒前
大胆的自行车完成签到 ,获得积分10
11秒前
11秒前
KAOKAO发布了新的文献求助10
12秒前
13秒前
14秒前
WGS发布了新的文献求助10
14秒前
14秒前
tqqwerty完成签到,获得积分10
15秒前
K0h完成签到,获得积分10
15秒前
梅里完成签到,获得积分10
15秒前
余额不足发布了新的文献求助30
15秒前
dew应助王鑫采纳,获得10
16秒前
wanci应助周文鑫采纳,获得10
17秒前
风中的外套完成签到,获得积分10
17秒前
17秒前
fzzf发布了新的文献求助10
18秒前
18秒前
19秒前
欣慰的颦发布了新的文献求助10
19秒前
香蕉觅云应助www采纳,获得10
19秒前
358489228完成签到,获得积分10
19秒前
周凡淇发布了新的文献求助10
20秒前
快乐小白菜应助hkh采纳,获得10
21秒前
田様应助骑着蜗牛追导弹采纳,获得10
21秒前
领导范儿应助WGS采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073082
求助须知:如何正确求助?哪些是违规求助? 4293232
关于积分的说明 13377905
捐赠科研通 4114645
什么是DOI,文献DOI怎么找? 2253057
邀请新用户注册赠送积分活动 1257880
关于科研通互助平台的介绍 1190739