All time-scale decomposition method and its application in gear fault diagnosis

断层(地质) 比例(比率) 分解 计算机科学 地震学 地质学 地理 地图学 化学 有机化学
作者
Zhengyang Cheng,Yu Yang,Niaoqing Hu,Zhe Cheng,Junsheng Cheng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241289873
摘要

Adaptive signal decomposition methods, especially without parameters, have become a popular way of diagnosing mechanical faults due to their capability to process mechanical vibration signals adaptively. Empirical mode decomposition (EMD), local mean decomposition (LMD), and local characteristic-scale decomposition (LCD) are typical parameterless adaptive signal decomposition methods currently applied to mechanical fault diagnosis. All of these methods use extreme points to construct baselines, and the mono-component signals are decomposed from an original signal by multiple sift. However, since these methods define time-scale parameters only through extreme points, they are prone to lose the local feature information of an original signal and lead to mode mixing. Aiming at the above problems, the time-scale parameters is defined by using extreme points and zero crossing points simultaneously in this paper. Therefore, we propose a new adaptive signal decomposition method called all time-scale decomposition (ATD). A complex signal can be adaptively decomposed into multiple independent all time-scale components by the ATD method. The baselines of ATD are constructed jointly by extreme points and zero crossing points, so ATD can extract more local feature information of a signal to suppress the mode mixing. First, the principle of ATD is proposed and the method of determining zero crossing points is introduced in this paper. Then, an empirical formula for compensation factor used to determine zero crossing points is deduced. Finally, ATD is verified by the simulation signals and gear signals, respectively. The results indicate that ATD has stronger mode mixing suppression capability and decomposition performance than EMD, LMD, and LCD, and it can be effectively used for gear fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王王的狗子完成签到 ,获得积分10
刚刚
1秒前
懵懂的子骞完成签到 ,获得积分10
1秒前
妙脆角完成签到,获得积分10
1秒前
舒适忆枫完成签到,获得积分10
2秒前
快学吧发布了新的文献求助10
2秒前
小小完成签到 ,获得积分10
2秒前
慕青应助雨天采纳,获得10
3秒前
娟儿完成签到 ,获得积分10
3秒前
研友_8yX0xZ发布了新的文献求助20
3秒前
洁白的故人完成签到,获得积分10
3秒前
王王完成签到 ,获得积分10
4秒前
Kiki发布了新的文献求助10
4秒前
Zzzz完成签到,获得积分10
4秒前
OFish发布了新的文献求助10
4秒前
崔乞完成签到,获得积分10
4秒前
4秒前
霸霸斌完成签到 ,获得积分10
5秒前
5秒前
eiland发布了新的文献求助10
6秒前
eden完成签到,获得积分10
6秒前
6秒前
忧虑的钻石完成签到,获得积分10
6秒前
852应助聪明的大门采纳,获得10
7秒前
145完成签到,获得积分10
8秒前
8秒前
糯米团的完成签到 ,获得积分20
8秒前
渣渣XM发布了新的文献求助10
8秒前
flyabc完成签到,获得积分10
8秒前
yn完成签到,获得积分10
9秒前
哈喽发布了新的文献求助10
10秒前
10秒前
starry完成签到,获得积分10
10秒前
追寻的涵菱完成签到,获得积分10
11秒前
快学吧完成签到,获得积分10
11秒前
包容追命发布了新的文献求助10
11秒前
马小马完成签到 ,获得积分10
11秒前
华仔应助caicailang84采纳,获得10
11秒前
12秒前
陈帅帅发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Textbook of Interventional Radiology 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294808
求助须知:如何正确求助?哪些是违规求助? 2930708
关于积分的说明 8447504
捐赠科研通 2603031
什么是DOI,文献DOI怎么找? 1420842
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643531