亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of acute respiratory infections using machine learning techniques in Amhara Region, Ethiopia

决策树 逻辑回归 随机森林 朴素贝叶斯分类器 梯度升压 机器学习 Boosting(机器学习) 医学 死亡率 接收机工作特性 支持向量机 人工智能 可能性 内科学 计算机科学
作者
Abdulaziz Kebede Kassaw,Gashaw Bekele,Ahmed Kebede Kassaw,Ali Yimer
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-76847-3
摘要

Abstract Many studies have shown that infectious diseases are responsible for the majority of deaths in children under five. Among these children, Acute Respiratory Infections is the most prevalent illness and cause of death worldwide. Acute respiratory infections continue to be the leading cause of death in developing countries, including Ethiopia. In order to predict the main factors contributing to acute respiratory infections in the Amhara regional state of Ethiopia, a machine learning technique was employed. This study utilized data from the 2016 Ethiopian Demographic and Health Survey. Seven machine learning models, including logistic regression, random forests, decision trees, Gradient Boosting, support vector machines, Naïve Bayes, and K-nearest neighbors, were employed to forecast the factors influencing acute respiratory infections. The accuracy of each model was assessed using receiver operating characteristic curves and various metrics. Among the seven models used, the Random Forest algorithm demonstrated the highest accuracy in predicting acute respiratory infections, with an accuracy rate of 90.35% and Area under the Curve of 94.80%. This was followed by the Decision Tree model with an accuracy rate of 88.69%, K-nearest neighbors with 86.35%, and Gradient Boosting with 82.69%. The Random Forest algorithm also exhibited positive and negative predictive values of 92.22% and 88.83%, respectively. Several factors were identified as significantly associated with ARI among children under five in the Amhara regional state, Ethiopia. These factors, included families with a poorer wealth status (log odds of 0.18) compared to their counterparts, families with four to six children (log odds of 0.1) compared to families with fewer than three living children, children without a history of diarrhea (log odds of -0.08), mothers who had occupation(log odds of 0.06) compared mothers who didn’t have occupation, children under six months of age (log odds of -0.05) compared to children older than six months, mothers with no education (log odds of 0.04) compared to mothers with primary education or higher, rural residents (log odds of 0.03) compared to non-rural residents, families using wood as a cooking material (log odds of 0.03) compared to those using electricity. Through Shapley Additive exPlanations value analysis on the Random Forest algorithm, we have identified significant risk factors for acute respiratory infections among children in the Amhara regional state of Ethiopia. The study found that the family’s wealth index, the number of children in the household, the mother’s occupation, the mother’s educational level, the type of residence, and the fuel type used for cooking were all associated with acute respiratory infections. Additionally, the research emphasized the importance of children being free from diarrhea and living in households with fewer children as essential factors for improving children’s health outcomes in the Amhara regional state, Ethiopia.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助gaberella采纳,获得10
1秒前
Rn完成签到 ,获得积分10
2秒前
18秒前
23秒前
占稚晴完成签到 ,获得积分10
26秒前
去去去去发布了新的文献求助10
27秒前
Akim应助gu采纳,获得30
36秒前
科研通AI2S应助去去去去采纳,获得10
55秒前
宁异勿同应助去去去去采纳,获得10
55秒前
科研通AI2S应助去去去去采纳,获得10
55秒前
归海梦岚完成签到,获得积分10
57秒前
nicolaslcq完成签到,获得积分10
1分钟前
满座完成签到 ,获得积分10
1分钟前
2分钟前
吴未完成签到,获得积分10
2分钟前
ThanhHuy发布了新的文献求助10
2分钟前
gu发布了新的文献求助30
2分钟前
Archers完成签到 ,获得积分10
2分钟前
乐洋洋发布了新的文献求助10
2分钟前
gu完成签到,获得积分10
2分钟前
2分钟前
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
小二郎应助悦耳的冰蝶采纳,获得10
3分钟前
小马甲应助Ning采纳,获得10
3分钟前
mangle完成签到,获得积分10
3分钟前
Jasper应助顺利山柏采纳,获得10
3分钟前
3分钟前
既然发布了新的文献求助10
3分钟前
Alanni完成签到 ,获得积分10
3分钟前
orixero应助既然采纳,获得10
3分钟前
cmq完成签到 ,获得积分10
3分钟前
乐洋洋关注了科研通微信公众号
3分钟前
gu关注了科研通微信公众号
3分钟前
123456777完成签到 ,获得积分10
4分钟前
xzx完成签到,获得积分10
4分钟前
斯文败类应助freedom采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142672
求助须知:如何正确求助?哪些是违规求助? 2793553
关于积分的说明 7806847
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303455
科研通“疑难数据库(出版商)”最低求助积分说明 626950
版权声明 601314