亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

OsSPL5 promotes rice outcrossing efficiency by G‐protein pathway

生物 异交 外显子 遗传学 基因 植物 花粉
作者
Fangping Li,Quanya Tan,Zhenpeng Gan,Danlu Han,Weifeng Yang,Xin Luan,Jieying Liu,Hongyuan Zhao,Yu Fu,Li Wang,Haifei Hu,Shiqiang Xu,Junliang Zhao,Haitao Zhu,Zupei Liu,Songguang Yang,Xiangdong Fu,Guiquan Zhang,Shaokui Wang
出处
期刊:Plant Biotechnology Journal [Wiley]
标识
DOI:10.1111/pbi.14514
摘要

The yield of rice F1 hybrid seed production is influenced by parental line traits, including stigma exsertion rate (SER), which impacts seed pricing and utilization (Marathi and Jena, 2015). SER is highly susceptible to environmental fluctuations, phenotypic and complex genetic factors (Miyata et al., 2007). Although over 40 QTLs related to SER have been identified, none have been molecularly characterized due to differences in genetic background and small additive effects (Zhu et al., 2023). We have demonstrated a positive correlation between stigma size and SER previously (Tan et al., 2023). Then we previously located the stigma size gene SER1 within a 470 kb interval on chromosome 2 based on SSSL-42, a Single Segment Substitution Line with Huajingxian74 (HJX74) as the recipient parent (Tan et al., 2021). In this study, homozygous recombinant lines derived from the crossing of SSSL-42 and HJX74 allowed the region of SER1 to be narrowed down to a 29.48 kb stretch flanked by markers QY18 and LST2 (Figure 1a, Table S1). The line R4, with the shortest substitution segment, was identified as a near-isogenic line for SER1 (NIL-SER1), while the HJX74 was referred to as NIL-ser1 (Figure 1a). The NILs did not differ from one another in many agronomic traits, but the significant difference in SER and stigma size were detected between NILs (Figures 1b–e and S1). There are three candidate genes (OsSPL5, OsCH240 and OsSm-F) detected related to the mapped interval. Variant analysis revealed that OsSPL5 harbours two nucleotide polymorphisms in the third exon in the mapped interval, resulting in amino acid substitutions (Figure S2). The transcriptome assays of the stigma revealed no significant differences in the gene expression among these three genes between the NILs (Figure S3). To investigate the candidate gene for SER1, we obtained over-expression lines and knockout lines for the three candidate genes. Either the gene-edited lines in the NIL-SER1 background or over-expression lines in the NIL-ser1 background, the transgenic lines of OsCH240 and OsSm-F exhibited no phenotypic changes in stigma size (Figure S4). However, the over-expression of OsSPL5 resulted in enlarged stigmas, whereas the knockout of OsSPL5 led to smaller stigmas (Figure 1g–j). Furthermore, the stigma exertion rate changed accordingly in different transgenic lines of OsSPL5 (Figure 1e,g,h). Thus, the candidate gene for SER1 is OsSPL5. The further RT-qPCR assay detected no variation in transcriptional levels across different tissues (Figure S5). Furthermore, the stigma size dramatically decreased in the gene-edited lines, KO-SER1-3rd exon (Figure S6). It strongly suggests that the sequence variation located in the third exon of OsSPL5 is the primary cause of the phenotypic differences between NILs. Scanning electron microscopy (SEM) indicated a significant increase in the epidermal cell length of both stigma brush (SB) and no-brush parts (SNB) in NIL-SER1 (Figures 1f and S7). Anatomical observations revealed that stigma size differences between NILs gradually increased as the spikelet developed (Figure S8). These results indicated that OsSPL5 regulates stigma size in rice by affecting cell size, which subsequently impacts SER. OsSPL5 is an important member of the SPL family, and subcellular localization indicates that it is primarily located in the nucleus (Figure S9). Transcriptional activation assays elucidated that the activation domain of OsSPL5 is located in the N-terminal region (Figure S10). Transcriptome analysis identified 3331 and 759 significant different expression genes in NIL-SER1 vs NIL-ser1 and NIL-ser1 vs KO-SER1, respectively (Table S2). Single transcription factor differentially regulate downstream target genes based on their functional strength in diverse allelic backgrounds, while gene knockout typically results in loss of function. A total of 379 genes exhibited increased expression in NIL-SER1 compared to NIL-ser1, while exhibiting decreased expression in KO-SER1 compared to NIL-SER1 (Figure 1k and Table S2). The Cut&Tag-Seq assays with GFP-SER1 fusion-transformed protoplasts revealed 2153 promoter- (−1000 to 0) related peaks associated with 1852 genes (Figure 1l; Table S3). Subsequent association analysis pinpointed 27 candidate downstream target genes of SER1, which displayed upregulation in NIL-SER1 and down regulation in KO-SER1 (Figure 1k; Table S4). Notably, DEP1, a gene that encodes the γ subunit of the heterotrimeric G-protein and is known as a crucial factor for spikelet and flower development in rice (Huang et al., 2009, 2022), was identified as one of the key candidate genes. The enrichment of SBP binding motifs (GTAC) was observed in its promoter, overlapping with the Cut&Tag peak summit (Figure 1k,l). Alphafold3 docking illustrated a strong binding interaction between the DEP1 promoter motif and SER1 (Figure S11). The combination of data from Cut&Tag-Seq and further assays of DAP-Seq illustrated a ~230 bp binding window of SER1 in the DEP1 promoter (Figure S12). The further promoter-LUC assay confirmed that SER1 binding to the DEP1 promoter enhanced downstream gene expression (Figure 1m). This finding was reinforced by Y1H assays, indicating a positive regulatory relationship between SER1 and DEP1 (Figure 1n). The investigation of relationship between DEP1 alleles and stigma size elucidated that the NIL-dep1-ser1 shows an elevation in stigma width compared to NIL-ser1 (NIL-DEP1-ser1) (Figure 1o,p). Furthermore, DEP1 knockout lines derived from NIL-SER1 showed a significant reduction in stigma size (Figure 1q,r). Additionally, the over-expression of SER1 resulted in shorter panicles, while KO-SER1 exhibited elongated panicles (Figures S13 and S14), consistent with known DEP1 functions. These findings suggest that SER1 exerts a positive regulatory effect on DEP1, thereby modulating stigma and panicle development in rice through the G-protein signalling pathway. To explore the natural variation of the SER1 gene, a total of 2042 Oryza accessions displaying extensive genetic diversity were analysed (Yao et al., 2019). SNP analysis of OsSPL5 indicated that SER1 and ser1 are the two predominant haplotypes. These two haplotypes are widespread in wild rice, but in cultivated rice, nearly all varieties of the indica subspecies carry ser1, while the japonica subspecies predominantly carry SER1. This indicates near complete differentiation between indica and japonica rice at this locus (Figure 1s; Table S5). The nucleotide diversity (π) of the SER1 gene is extremely low within the two cultivated rice subspecies (Figure 1t). This suggests significant potential for SER1 in indica rice breeding programs. The downstream DEP1 gene also shows strong inter-subspecific differentiation, suggesting co-selection during domestication (Figure S15; Table S5). We further introgressed the SER1 gene into lines of P132-16A and P132-16B, which is an indica male sterile line and its corresponding restorer line derived from HJX74 with a ser1 genetic background (Figure 1u–w). The restorer line, P132-16B-SER1, exhibited a heritably higher SER compared to both HJX74 and P132-16B (Figure 1x,y). The generated P132-16A-SER1 lines, which maintained pollen sterility (Figure 1w), showed a higher seed-setting rate than P132-16A in outcrossing rates analysis (Figure 1z). These results indicate the potential for effective application of SER1 in rice breeding programs aimed at improving hybrid seed production. In this study, we identified SER1 (synonymous with OsSPL5) as a pivotal regulator of stigma exertion rate and stigma size in rice. Previous research has demonstrated that the SPL family influences inflorescence morphology (Wang and Zhang, 2017). The potential interaction between SER1 and DEP1 suggests an intricate regulatory network. The differential expression of genes, such as OsRAC3, OsBMY4 and OsGASR2, further suggests extensive genetic interactions (Table S4). Previous studies have elucidated that stigma exsertion is crucial for hybrid seed production and significantly impacts rice domestication. The transition from the high SER and outcrossing behaviour of wild rice to the low SER and predominantly self-pollinating behaviour in cultivated rice has been reported (Zhu et al., 2023). Haplotype analysis revealed higher nucleotide diversity for SER1 in wild rice, suggesting additional functional roles and highlighting the evolutionary significance of SER in rice domestication. This work supported by Biological Breeding-National Science and Technology Major Project (2023ZD04069), the National Natural Science Foundation of China (32401881, 32201841, 91435207), the Key Research and Development Program of Guangdong Province (2022B0202060002), the major science and technology research projects of Guangdong Laboratory for Lingnan Modern Agriculture (NT2021001), and the China Postdoctoral Science Foundation (2021M701265, 2022M721213). The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions. Figures S1-S15 Supplementary Figures. Tables S1-S5 Supplementary Tables. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助小鳄鱼夸夸采纳,获得10
18秒前
27秒前
32秒前
糖伯虎完成签到 ,获得积分10
35秒前
小蘑菇应助科研通管家采纳,获得10
1分钟前
chiazy完成签到 ,获得积分10
1分钟前
2分钟前
天天快乐应助Nauyt采纳,获得10
2分钟前
heavens发布了新的文献求助10
2分钟前
采薇发布了新的文献求助30
2分钟前
2分钟前
蜂蜜不是糖完成签到 ,获得积分10
2分钟前
Nauyt发布了新的文献求助10
2分钟前
Nauyt完成签到,获得积分10
3分钟前
jyy发布了新的文献求助10
3分钟前
紫熊完成签到,获得积分10
3分钟前
采薇发布了新的文献求助10
3分钟前
科研通AI2S应助chiyudoubao采纳,获得10
3分钟前
Amy完成签到 ,获得积分10
4分钟前
Benhnhk21完成签到,获得积分10
5分钟前
pinklay完成签到 ,获得积分10
5分钟前
6分钟前
采薇发布了新的文献求助10
7分钟前
wangye完成签到 ,获得积分10
7分钟前
水若琳完成签到,获得积分10
8分钟前
8分钟前
heavens发布了新的文献求助100
9分钟前
陶醉的蜜蜂完成签到,获得积分10
9分钟前
9分钟前
采薇发布了新的文献求助10
9分钟前
heavens完成签到,获得积分10
10分钟前
采薇发布了新的文献求助10
10分钟前
11分钟前
丘比特应助学习的空白采纳,获得10
11分钟前
壮观晓兰发布了新的文献求助10
11分钟前
草木完成签到,获得积分10
11分钟前
11分钟前
12分钟前
英俊的铭应助学习的空白采纳,获得10
13分钟前
万能图书馆应助jyy采纳,获得30
13分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244737
求助须知:如何正确求助?哪些是违规求助? 2888410
关于积分的说明 8252853
捐赠科研通 2556864
什么是DOI,文献DOI怎么找? 1385423
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626269