已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic Counting and Location of Rice Seedlings in Low Altitude UAV Images Based on Point Supervision

低空 高度(三角形) 点(几何) 遥感 水稻 环境科学 计算机视觉 园艺 计算机科学 生物 地理 数学 几何学
作者
Cheng Li,Nan Deng,Shaowei Mi,Rui Zhou,Yineng Chen,Yuezhao Deng,Kui Fang
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:14 (12): 2169-2169
标识
DOI:10.3390/agriculture14122169
摘要

The number of rice seedlings and their spatial distribution are the main agronomic components for determining rice yield. However, the above agronomic information is manually obtained through visual inspection, which is not only labor-intensive and time-consuming but also low in accuracy. To address these issues, this paper proposes RS-P2PNet, which automatically counts and locates rice seedlings through point supervision. Specifically, RS-P2PNet first adopts Resnet as its backbone and introduces mixed local channel attention (MLCA) in each stage. This allows the model to pay attention to the task-related feature in the spatial and channel dimensions and avoid interference from the background. In addition, a multi-scale feature fusion module (MSFF) is proposed by adding different levels of features from the backbone. It combines the shallow details and high-order semantic information of rice seedlings, which can improve the positioning accuracy of the model. Finally, two rice seedling datasets, UERD15 and UERD25, with different resolutions, are constructed to verify the performance of RS-P2PNet. The experimental results show that the MAE values of RS-P2PNet reach 1.60 and 2.43 in the counting task, and compared to P2PNet, they are reduced by 30.43% and 9.32%, respectively. In the localization task, the Recall rates of RS-P2PNet reach 97.50% and 96.67%, exceeding those of P2PNet by 1.55% and 1.17%, respectively. Therefore, RS-P2PNet has effectively accomplished the counting and localization of rice seedlings. In addition, the MAE and RMSE of RS-P2PNet on the public dataset DRPD reach 1.7 and 2.2, respectively, demonstrating good generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JKcheng13完成签到 ,获得积分10
刚刚
1秒前
小昕思完成签到 ,获得积分10
2秒前
3秒前
3秒前
科研通AI5应助SongNan_Ding采纳,获得10
3秒前
4秒前
5秒前
binyao2024发布了新的文献求助10
6秒前
yu发布了新的文献求助10
7秒前
9秒前
lili-发布了新的文献求助10
9秒前
xwxxoo发布了新的文献求助10
9秒前
wang5945完成签到 ,获得积分10
9秒前
12秒前
15秒前
YANGVV完成签到 ,获得积分10
16秒前
十七发布了新的文献求助10
17秒前
lili-完成签到,获得积分20
17秒前
yu完成签到,获得积分10
20秒前
26秒前
31秒前
玄音完成签到,获得积分10
32秒前
8是消毒液发布了新的文献求助10
35秒前
binyao2024完成签到,获得积分10
35秒前
科研通AI5应助xwxxoo采纳,获得10
39秒前
斯文败类应助浔初先生采纳,获得30
40秒前
陈芒果啊完成签到 ,获得积分10
40秒前
科研通AI2S应助机灵柚子采纳,获得10
43秒前
潇洒胡萝卜完成签到,获得积分20
45秒前
Georgechan完成签到,获得积分10
46秒前
十七完成签到,获得积分10
50秒前
Splaink完成签到 ,获得积分10
51秒前
火火完成签到 ,获得积分10
52秒前
饱满跳跳糖完成签到,获得积分10
54秒前
传奇3应助zhuzhuxia采纳,获得10
1分钟前
未夕晴完成签到,获得积分10
1分钟前
机智的小懒虫完成签到 ,获得积分10
1分钟前
李家静完成签到 ,获得积分10
1分钟前
Winner完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773598
求助须知:如何正确求助?哪些是违规求助? 3319118
关于积分的说明 10193082
捐赠科研通 3033727
什么是DOI,文献DOI怎么找? 1664634
邀请新用户注册赠送积分活动 796263
科研通“疑难数据库(出版商)”最低求助积分说明 757390