Ferromagnetic Nickel as a Sustainable Reducing Agent for Tin–Lead Mixed Perovskite in Single‐Junction and Tandem Solar Cells

材料科学 串联 钙钛矿(结构) 能量转换效率 带隙 光电子学 纳米技术 化学工程 冶金 复合材料 工程类
作者
Doyun Im,Passarut Boonmongkolras,Yeonghun Yun,Sung Woong Yang,Sunwoo Kim,Jungchul Yun,Rajendra Kumar Gunasekaran,You‐Hyun Seo,Nam Joong Jeon,Gill Sang Han,Sang-Wook Lee
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202411403
摘要

Abstract Narrow‐bandgap (NBG) Sn–Pb mixed perovskite solar cells (PSCs) represent a promising solution for surpassing the radiative efficiency of single‐junction solar cells. The unique bandgap tunability of halide perovskites enables optimal tandem configurations of wide‐bandgap (WBG) and NBG subcells. However, these devices are limited by the susceptibility of Sn 2+ in the NBG bottom cell to being oxidized to Sn 4+ , creating detrimental Sn vacancies. Herein, a novel approach that replaces Sn particles with Ni particles is introduced as the reducing agent for Sn–Pb mixed perovskite precursor solutions. The ferromagnetic properties of Ni enable simple magnetic filtration, eliminating the filtration issues associated with Sn particles. Ni particles can be reused up to five times without significantly affecting the PSC's performance. Additionally, Ni effectively mitigates the oxidation of Sn 2+ due to its low reduction potential (−0.23 V), thereby enhancing device performance. Single‐junction Sn–Pb mixed PSCs prepared using Ni achieve a power‐conversion efficiency (PCE) of 22.29%, retaining over 90% of their initial efficiency after 1250 h. Furthermore, Ni‐based all‐perovskite tandem solar cells combining 1.77 eV WBG top cells with 1.25 eV NBG bottom cells achieve a remarkable PCE of 28.13%. Thus, the proposed strategy can facilitate the commercialization of all‐perovskite tandem devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助dd采纳,获得10
1秒前
汉堡包应助cuihl123采纳,获得10
1秒前
李浓完成签到,获得积分10
1秒前
DreamMaker发布了新的文献求助10
1秒前
mao12wang完成签到,获得积分10
2秒前
2秒前
bdvdsrwteges发布了新的文献求助10
3秒前
如约而至发布了新的文献求助20
3秒前
纯真的莫茗完成签到,获得积分10
3秒前
彭于晏应助超11采纳,获得10
4秒前
4秒前
gavincsu发布了新的文献求助10
4秒前
KSGGS给KSGGS的求助进行了留言
4秒前
flow驳回了Aria应助
4秒前
lixiunan完成签到,获得积分10
4秒前
4秒前
dildil发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
边瑞明完成签到,获得积分10
7秒前
Wang发布了新的文献求助10
8秒前
Jenny应助拼搏思卉采纳,获得10
8秒前
8秒前
神勇的雅香应助不喝可乐采纳,获得10
8秒前
清脆的白开水完成签到,获得积分10
8秒前
Hello应助善良过客采纳,获得10
8秒前
现实的曼荷完成签到,获得积分10
8秒前
8秒前
9秒前
zyyyy完成签到,获得积分10
9秒前
dd完成签到,获得积分20
9秒前
9秒前
混子发布了新的文献求助10
9秒前
HYG完成签到,获得积分10
10秒前
二橦完成签到 ,获得积分10
10秒前
熊博士完成签到,获得积分10
11秒前
哲000发布了新的文献求助10
11秒前
丰富的世界完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759