作者
Yi-Zhe Zhu,Ruifen Zheng,Zhining Fan,Ling Liu,J YE,Kai Wang,Caiming Tang
摘要
Halogenated organic pollutants (HOPs) have attracted considerable attention owing to their persistence, bioaccumulation, and toxicity. The development of methods to detect HOPs in fish is challenging owing to the compositional complexity of fish matrices, which contain high levels of lipids and relatively low concentrations of HOPs. In addition, the lipophilicity of most HOPs renders their extraction difficult. Moreover, the simultaneous determination of multiple HOPs to achieve the high-throughput screening of these analytes is complex. In this study, a reliable and efficient pretreatment method based on ultrasound-assisted extraction, gel permeation chromatography purification, and ultra performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was developed for the determination of 12 HOPs in edible fish. The procedures of sample extraction and purification and LC-HRMS detection parameters were optimized to improve the performance of the method. Fresh fish samples were thoroughly rinsed with water, and non-edible parts, including the skin, bones, and phosphorus, were removed. The fish were weighed, cut into small pieces, and vacuum freeze-dried for 48 h. Subsequently, a freeze grinder was used to grind the dried fish into a fine powder. Exactly 2 g of the fish powder was weighed, fortified with isotope-labeled internal standards of the HOPs, and allowed to stand for 5 min. Methanol-acetonitrile (1∶1, v/v) was then added, followed by vortex mixing and ultrasonication. After centrifugation, the supernatant was transferred to a fresh tube. The extraction process was repeated twice and all extracts were combined. The extract was evaporated under a gentle nitrogen flow and redissolved in a mixture of ethyl acetate-cyclohexane (1∶1, v/v). The sample mixture was cleaned using gel permeation chromatography, and the eluate was collected and concentrated under a nitrogen flow. Sample residuals were reconstituted with water-methanol (1∶1, v/v) prior to instrumental analysis. Chromatographic separation was performed using an ACQUITY UPLC BEH C18 column (100 mm×2.1 mm, 1.7 μm). Water containing 2 mmol/L NH