亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting bone metastasis risk of colorectal tumors using radiomics and deep learning ViT model

医学 无线电技术 骨转移 转移 结直肠癌 肿瘤科 放射科 内科学 癌症
作者
Guanfeng Chen,Wenxi Liu,Yung‐Hsiang Lin,Jie Zhang,Risheng Huang,D. Ye,Jing Huang,Jieyun Chen
出处
期刊:Journal of bone oncology [Elsevier BV]
卷期号:51: 100659-100659
标识
DOI:10.1016/j.jbo.2024.100659
摘要

Colorectal cancer is a prevalent malignancy with a significant risk of metastasis, including to bones, which severely impacts patient outcomes. Accurate prediction of bone metastasis risk is crucial for optimizing treatment strategies and improving prognosis. This study aims to develop a predictive model combining radiomics and Vision Transformer (ViT) deep learning techniques to assess the risk of bone metastasis in colorectal cancer patients using both plain and contrast-enhanced CT images. We conducted a retrospective analysis of 155 colorectal cancer patients, including 81 with bone metastasis and 74 without. Radiomic features were extracted from segmented tumors on both plain and contrast-enhanced CT images. LASSO regression was applied to select key features, which were then used to build traditional machine learning models, including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest, LightGBM, and XGBoost. Additionally, a dual-modality ViT model was trained on the same CT images, with a late fusion strategy employed to combine outputs from the different modalities. Model performance was evaluated using AUC-ROC, accuracy, sensitivity, and specificity, and differences were statistically assessed using DeLong's test. The ViT model demonstrated superior predictive performance, achieving an AUC of 0.918 on the test set, significantly outperforming all traditional radiomics-based models. The SVM model, while the best among traditional models, still underperformed compared to the ViT model. The ViT model's strength lies in its ability to capture complex spatial relationships and long-range dependencies within the imaging data, which are often missed by traditional models. DeLong's test confirmed the statistical significance of the ViT model's enhanced performance, highlighting its potential as a powerful tool for predicting bone metastasis risk in colorectal cancer patients. The integration of radiomics with ViT-based deep learning offers a robust and accurate method for predicting bone metastasis risk in colorectal cancer patients. The ViT model's ability to analyze dual-modality CT imaging data provides greater precision in risk assessment, which can improve clinical decision-making and personalized treatment strategies. These findings underscore the promise of advanced deep learning models in enhancing the accuracy of metastasis prediction. Further validation in larger, multicenter studies is recommended to confirm the generalizability of these results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
轻松黑裤完成签到,获得积分20
4秒前
轻松黑裤发布了新的文献求助10
7秒前
哈哈哈eric完成签到,获得积分10
16秒前
哈哈哈eric发布了新的文献求助10
22秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
19950728完成签到 ,获得积分10
43秒前
1分钟前
结实书南发布了新的文献求助20
1分钟前
田野的小家庭完成签到 ,获得积分10
2分钟前
慕青应助科研通管家采纳,获得20
2分钟前
33333完成签到,获得积分10
2分钟前
古月发布了新的文献求助10
3分钟前
虚幻元风完成签到 ,获得积分10
4分钟前
maher完成签到,获得积分10
5分钟前
5分钟前
maher发布了新的文献求助20
5分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
George完成签到,获得积分10
6分钟前
Fly完成签到 ,获得积分10
6分钟前
小白菜完成签到,获得积分10
7分钟前
星辰大海应助zhuuuuuuu采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
清新的寄风完成签到 ,获得积分10
8分钟前
CipherSage应助球球子采纳,获得10
9分钟前
LYL完成签到,获得积分10
9分钟前
张雨露完成签到 ,获得积分10
9分钟前
Beyond095完成签到 ,获得积分10
9分钟前
LILYpig完成签到 ,获得积分10
10分钟前
10分钟前
科研通AI5应助科研通管家采纳,获得10
10分钟前
10分钟前
perovskite发布了新的文献求助10
10分钟前
perovskite完成签到,获得积分10
10分钟前
sailingluwl完成签到,获得积分10
11分钟前
11分钟前
zhengrunhang发布了新的文献求助10
11分钟前
zhengrunhang完成签到,获得积分20
11分钟前
11分钟前
Lucas应助zhengrunhang采纳,获得10
11分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775953
求助须知:如何正确求助?哪些是违规求助? 3321530
关于积分的说明 10206061
捐赠科研通 3036604
什么是DOI,文献DOI怎么找? 1666365
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805