Predicting bone metastasis risk of colorectal tumors using radiomics and deep learning ViT model

医学 无线电技术 骨转移 转移 结直肠癌 肿瘤科 放射科 内科学 癌症
作者
Guanfeng Chen,Wenxi Liu,Yung‐Hsiang Lin,Jie Zhang,Risheng Huang,D. Ye,Jing Huang,Jieyun Chen
出处
期刊:Journal of bone oncology [Elsevier]
卷期号:51: 100659-100659
标识
DOI:10.1016/j.jbo.2024.100659
摘要

Colorectal cancer is a prevalent malignancy with a significant risk of metastasis, including to bones, which severely impacts patient outcomes. Accurate prediction of bone metastasis risk is crucial for optimizing treatment strategies and improving prognosis. This study aims to develop a predictive model combining radiomics and Vision Transformer (ViT) deep learning techniques to assess the risk of bone metastasis in colorectal cancer patients using both plain and contrast-enhanced CT images. We conducted a retrospective analysis of 155 colorectal cancer patients, including 81 with bone metastasis and 74 without. Radiomic features were extracted from segmented tumors on both plain and contrast-enhanced CT images. LASSO regression was applied to select key features, which were then used to build traditional machine learning models, including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest, LightGBM, and XGBoost. Additionally, a dual-modality ViT model was trained on the same CT images, with a late fusion strategy employed to combine outputs from the different modalities. Model performance was evaluated using AUC-ROC, accuracy, sensitivity, and specificity, and differences were statistically assessed using DeLong's test. The ViT model demonstrated superior predictive performance, achieving an AUC of 0.918 on the test set, significantly outperforming all traditional radiomics-based models. The SVM model, while the best among traditional models, still underperformed compared to the ViT model. The ViT model's strength lies in its ability to capture complex spatial relationships and long-range dependencies within the imaging data, which are often missed by traditional models. DeLong's test confirmed the statistical significance of the ViT model's enhanced performance, highlighting its potential as a powerful tool for predicting bone metastasis risk in colorectal cancer patients. The integration of radiomics with ViT-based deep learning offers a robust and accurate method for predicting bone metastasis risk in colorectal cancer patients. The ViT model's ability to analyze dual-modality CT imaging data provides greater precision in risk assessment, which can improve clinical decision-making and personalized treatment strategies. These findings underscore the promise of advanced deep learning models in enhancing the accuracy of metastasis prediction. Further validation in larger, multicenter studies is recommended to confirm the generalizability of these results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁月浪翻了完成签到,获得积分10
刚刚
cwq完成签到 ,获得积分10
1秒前
Syx_rcees完成签到,获得积分10
3秒前
广州城建职业技术学院完成签到,获得积分10
3秒前
Pyrene完成签到,获得积分10
3秒前
3秒前
nikko完成签到,获得积分10
4秒前
hhan完成签到 ,获得积分10
5秒前
5秒前
七月星河完成签到 ,获得积分10
5秒前
叶远望完成签到 ,获得积分10
6秒前
李好人完成签到,获得积分10
7秒前
SciGPT应助病猫不发威采纳,获得10
7秒前
你看我看你_Yin关注了科研通微信公众号
9秒前
9秒前
Yi发布了新的文献求助10
9秒前
兔子不爱吃胡萝卜完成签到,获得积分10
10秒前
肉松小贝完成签到 ,获得积分10
10秒前
pbf完成签到,获得积分10
10秒前
长颈鹿完成签到,获得积分10
11秒前
PHOTONS完成签到,获得积分10
12秒前
李李李发布了新的文献求助10
12秒前
chen发布了新的文献求助10
12秒前
瞳梦完成签到,获得积分10
12秒前
林谷雨完成签到 ,获得积分10
13秒前
dandan完成签到,获得积分10
13秒前
FashionBoy应助PHOTONS采纳,获得10
15秒前
爱吃萝卜的Bob完成签到,获得积分10
17秒前
liucc完成签到,获得积分10
18秒前
Ava应助长颈鹿采纳,获得10
18秒前
陶远望完成签到,获得积分10
18秒前
20秒前
milan001完成签到,获得积分10
22秒前
神锋天下完成签到,获得积分10
23秒前
李二狗完成签到,获得积分10
23秒前
叹千泠完成签到,获得积分10
24秒前
火华完成签到 ,获得积分10
24秒前
24秒前
科研通AI2S应助WANG采纳,获得10
25秒前
李李李完成签到,获得积分10
25秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3384573
求助须知:如何正确求助?哪些是违规求助? 2998592
关于积分的说明 8779640
捐赠科研通 2684164
什么是DOI,文献DOI怎么找? 1470236
科研通“疑难数据库(出版商)”最低求助积分说明 679608
邀请新用户注册赠送积分活动 672029