Artificial Intelligence-Enabled Novel Atrial Fibrillation Diagnosis System Using 3D Pulse Perception Flexible Pressure Sensor Array

心房颤动 卷积神经网络 可穿戴计算机 计算机科学 脉搏率 人工智能 脉搏(音乐) 人工神经网络 可穿戴技术 信号(编程语言) 深度学习 模式识别(心理学) 医学 血压 心脏病学 内科学 嵌入式系统 电信 探测器 程序设计语言
作者
Yujie Cao,Ping Li,Yirun Zhu,Zheng Wang,Nuo Tang,Zhibin Li,Bin Cheng,Fengxia Wang,Tao Chen,Lining Sun
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.4c02395
摘要

Atrial fibrillation (AF) as one of the most common cardiovascular diseases has attracted great attention due to its high disability and mortality rate. Thus, a timely and effective recognition method for AF is of great importance for diagnosing and preventing it. Herein, we proposed a novel intelligent sensing and recognition system for AF which combined Traditional Chinese Medicine (TCM), flexible wearable electronic devices, and artificial intelligence. Experiment and simulation synergistically verified that the flexible pressure sensor arrays designed according to the TCM theory could synchronously obtain the 3D pulses at Cun, Guan, and Chi. Combined with a homemade signal acquisition system and the pulse signals labeled by doctors of cardiovascular diseases, the differences in the 3D pulse signals between ones with AF and without can be picked up clearly. Enabled the convolutional neural network (CNN) and the pulse database, the recognition model was formed with a recognition rate of up to 90%. As a proof of concept, the artificial intelligence-enabled novel atrial fibrillation diagnosis system has been used to detect patients with AF in hospitals, showing 80% recognition rate. This work provides a new strategy to precisely diagnose and remotely treat AF, as well as to accelerate the development of Modern Chinese Medicine treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eternity136发布了新的文献求助10
刚刚
大师应助Heng采纳,获得50
1秒前
水沐菁华完成签到,获得积分10
1秒前
1秒前
yudandan@CJLU发布了新的文献求助10
1秒前
3秒前
3秒前
研友_nPbeR8发布了新的文献求助10
5秒前
爽o发布了新的文献求助10
5秒前
5秒前
开朗的大米完成签到,获得积分10
5秒前
QSQ发布了新的文献求助10
6秒前
su发布了新的文献求助10
6秒前
7秒前
7秒前
昔时旧日发布了新的文献求助10
7秒前
8秒前
10秒前
11秒前
11秒前
11秒前
克里斯Siu发布了新的文献求助10
12秒前
温婉的映萱完成签到,获得积分10
12秒前
潇洒若血完成签到,获得积分10
12秒前
一个小柑橘完成签到,获得积分10
13秒前
caomao发布了新的文献求助10
14秒前
14秒前
陈法国发布了新的文献求助10
15秒前
yudandan@CJLU发布了新的文献求助10
15秒前
等待毛豆完成签到,获得积分10
16秒前
1eader1发布了新的文献求助10
16秒前
19秒前
19秒前
李健应助AU采纳,获得10
21秒前
情怀应助陈法国采纳,获得10
21秒前
21秒前
21秒前
22秒前
共享精神应助摆烂昊采纳,获得10
23秒前
Heng给Heng的求助进行了留言
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313931
求助须知:如何正确求助?哪些是违规求助? 2946299
关于积分的说明 8529341
捐赠科研通 2621879
什么是DOI,文献DOI怎么找? 1434209
科研通“疑难数据库(出版商)”最低求助积分说明 665170
邀请新用户注册赠送积分活动 650738