石墨氮化碳
铋
钼酸盐
材料科学
氧气
化学电阻器
异质结
无机化学
纳米技术
光电子学
化学
冶金
生物化学
有机化学
光催化
催化作用
作者
Kaidi Wu,Xinzhu Qiu,Yifan Luo,Chao Zhang
出处
期刊:ACS Sensors
[American Chemical Society]
日期:2024-12-03
标识
DOI:10.1021/acssensors.4c02307
摘要
Metal oxide-based chemiresistive gas sensors are expected to play a significant role in assessing human health and evaluating food spoilage. However, the high operating temperature, insufficient limit of detection (LOD), and long response/recovery time restrict their broad application. Herein, 3D Bi2MoO6/2D Eg-C3N4 heterocomposites are developed for advanced NH3 gas sensors with RT operational mode. Utilizing the synergetic engineering of micro-nanostructure, surface oxygen vacancies, and well-defined Type II n–n heterojunctions, BMOCN3 demonstrated superior NH3 sensing properties at 23 °C, including the high response (S = 13.6 at 10 ppm), fast response/recovery speed (8/30 s), excellent selectivity, and low LOD (166 ppb). Based on the experimental, DFT, and MD studies, the improved sensing performance can be ascribed to accelerated charge transfer, superior redox capacity, and improved adsorption/desorption kinetics. Moreover, the practical application in rapid exhaled NH3 biomarker detection of the as-fabricated gas sensor was preliminarily verified. This work highlights that the novel synergetic engineering can effectively modulate the electronic structure and charge transfer, offering a rational solution for room temperature chemiresistive gas sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI