What matters most to the material intensity coefficient of buildings? Random forest‐based evidence from China

可比性 计算器 工业生态学 分类 库存(枪支) 建筑材料 计算机科学 统计 计量经济学 环境资源管理 生态学 地理 环境科学 数学 土木工程 工程类 人工智能 考古 组合数学 持续性 生物 操作系统
作者
Ruirui Zhang,Jing Guo,Dong Yang,Hiroaki Shirakawa,Feng Shi,Hiroki Tanikawa
出处
期刊:Journal of Industrial Ecology [Wiley]
卷期号:26 (5): 1809-1823 被引量:9
标识
DOI:10.1111/jiec.13332
摘要

Abstract Material intensity coefficient (MIC) is vital for material stock accounting in the field of industrial ecology. However, the categorization of MIC varies across regions especially for buildings that diverge greatly along the history and space aspect, and acquisition of MIC data and building information have always been a challenge in related studies. In this study, the state‐of‐art ensemble model “Random Forest” was developed on Chinese buildings to identify the impact of four building attributes (building structure, construction year, use type, and region) on MIC, and these features’ importance was further assessed by considering variable correlations. The features’ importance and their individual effects on MIC were intuitively revealed by depicting the partial dependence plots. Finally, a set of hierarchical MIC values was estimated by integrating the order of four variables’ importance and a quick MIC calculator was provided. Results showed that building structure is the most influential attribute for MIC, followed by the construction year, use type, and region, successively. The RF‐based MIC values allow researchers to apply it to material stock and flow analysis by choosing a specific building feature(s) in the MIC calculator, which is (are) available in building physical inventory data. This study provides a method that could help researchers locate key influencing variables and give insights into the comparability of MIC research across regions and play an important role in developing urban mining and circular economy strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助Lyj采纳,获得10
1秒前
微信研友发布了新的文献求助10
1秒前
爆米花应助缥缈傥采纳,获得10
2秒前
温子晴发布了新的文献求助10
2秒前
CodeCraft应助笨笨凡松采纳,获得10
4秒前
cat发布了新的文献求助10
6秒前
7秒前
田様应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得30
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得30
8秒前
不配.应助科研通管家采纳,获得20
8秒前
不配.应助科研通管家采纳,获得20
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
沈小柠檬发布了新的文献求助10
8秒前
10秒前
10秒前
10秒前
隔壁的镇长完成签到,获得积分10
10秒前
replay发布了新的文献求助10
11秒前
12秒前
Lyj完成签到,获得积分10
12秒前
12秒前
卛e完成签到,获得积分20
12秒前
13秒前
缥缈傥发布了新的文献求助10
13秒前
14秒前
雪中完成签到,获得积分20
14秒前
15秒前
默默的依凝完成签到,获得积分10
15秒前
卛e发布了新的文献求助10
15秒前
踏实傲菡发布了新的文献求助10
16秒前
17秒前
栩栩关注了科研通微信公众号
18秒前
Lyj发布了新的文献求助10
18秒前
19秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128997
求助须知:如何正确求助?哪些是违规求助? 2779786
关于积分的说明 7744747
捐赠科研通 2434950
什么是DOI,文献DOI怎么找? 1293826
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530