Incorporation of Serial 12-Lead Electrocardiogram With Machine Learning to Augment the Out-of-Hospital Diagnosis of Non-ST Elevation Acute Coronary Syndrome

医学 急性冠脉综合征 ST高程 急诊科 内科学 心电图 心脏病学 铅(地质) ST段 急诊医学 心肌梗塞 地貌学 地质学 精神科
作者
Zeineb Bouzid,Ziad Faramand,Christian Martin‐Gill,Susan M. Sereika,Clifton W. Callaway,Samir Saba,Richard E. Gregg,Fabio Badilini,Ervin Sejdić,Salah S. Al‐Zaiti
出处
期刊:Annals of Emergency Medicine [Elsevier BV]
卷期号:81 (1): 57-69 被引量:12
标识
DOI:10.1016/j.annemergmed.2022.08.005
摘要

Ischemic electrocardiogram (ECG) changes are subtle and transient in patients with suspected non-ST-segment elevation (NSTE)-acute coronary syndrome. However, the out-of-hospital ECG is not routinely used during subsequent evaluation at the emergency department. Therefore, we sought to compare the diagnostic performance of out-of-hospital and ED ECG and evaluate the incremental gain of artificial intelligence-augmented ECG analysis.This prospective observational cohort study recruited patients with out-of-hospital chest pain. We retrieved out-of-hospital-ECG obtained by paramedics in the field and the first ED ECG obtained by nurses during inhospital evaluation. Two independent and blinded reviewers interpreted ECG dyads in mixed order per practice recommendations. Using 179 morphological ECG features, we trained, cross-validated, and tested a random forest classifier to augment non ST-elevation acute coronary syndrome (NSTE-ACS) diagnosis.Our sample included 2,122 patients (age 59 [16]; 53% women; 44% Black, 13.5% confirmed acute coronary syndrome). The rate of diagnostic ST elevation and ST depression were 5.9% and 16.2% on out-of-hospital-ECG and 6.1% and 12.4% on ED ECG, with ∼40% of changes seen on out-of-hospital-ECG persisting and ∼60% resolving. Using expert interpretation of out-of-hospital-ECG alone gave poor baseline performance with area under the receiver operating characteristic (AUC), sensitivity, and negative predictive values of 0.69, 0.50, and 0.92. Using expert interpretation of serial ECG changes enhanced this performance (AUC 0.80, sensitivity 0.61, and specificity 0.93). Interestingly, augmenting the out-of-hospital-ECG alone with artificial intelligence algorithms boosted its performance (AUC 0.83, sensitivity 0.75, and specificity 0.95), yielding a net reclassification improvement of 29.5% against expert ECG interpretation.In this study, 60% of diagnostic ST changes resolved prior to hospital arrival, making the ED ECG suboptimal for the inhospital evaluation of NSTE-ACS. Using serial ECG changes or incorporating artificial intelligence-augmented analyses would allow correctly reclassifying one in 4 patients with suspected NSTE-ACS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽灵松关注了科研通微信公众号
刚刚
豆子完成签到,获得积分10
1秒前
悟空发布了新的文献求助10
1秒前
沙世平完成签到,获得积分10
2秒前
guohezu发布了新的文献求助10
2秒前
3秒前
乐乐应助欢欢欢乐乐乐乐采纳,获得10
3秒前
无限亦玉发布了新的文献求助10
3秒前
罗婕完成签到,获得积分20
4秒前
王小茗完成签到,获得积分10
4秒前
Orange应助Tinsulfides采纳,获得10
5秒前
Ti发布了新的文献求助10
6秒前
zmy发布了新的文献求助10
6秒前
6秒前
牛牛123完成签到 ,获得积分10
6秒前
7秒前
ganson完成签到 ,获得积分10
7秒前
guohezu完成签到,获得积分10
7秒前
LQY完成签到,获得积分20
8秒前
8秒前
9秒前
粗心的幻莲完成签到,获得积分10
9秒前
高高完成签到 ,获得积分10
11秒前
LQY发布了新的文献求助10
11秒前
呆萌念真完成签到,获得积分20
11秒前
西域卧虎完成签到 ,获得积分10
11秒前
小二郎应助萌酱采纳,获得10
12秒前
YYL完成签到,获得积分10
12秒前
香辣鸡腿堡完成签到,获得积分10
12秒前
12秒前
小鱼儿完成签到,获得积分10
13秒前
Orange应助Elaine采纳,获得10
14秒前
15秒前
111完成签到,获得积分10
15秒前
顾矜应助Luke采纳,获得10
15秒前
上官若男应助easy采纳,获得10
15秒前
土豪的土豆完成签到 ,获得积分10
16秒前
怡书陈完成签到 ,获得积分10
16秒前
yn完成签到 ,获得积分10
16秒前
qq781208654完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Clinical Trials: A Methodologic Perspective 200
Essentials of Clinical Research 2nd Edition by Stephen P. Glasser 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695647
求助须知:如何正确求助?哪些是违规求助? 3247193
关于积分的说明 9853885
捐赠科研通 2958755
什么是DOI,文献DOI怎么找? 1622319
邀请新用户注册赠送积分活动 767911
科研通“疑难数据库(出版商)”最低求助积分说明 741302