公制(单位)
肺炎
卷积神经网络
计算机科学
试验装置
深度学习
放射科
集合(抽象数据类型)
人工智能
医学
医学物理学
模式识别(心理学)
内科学
工程类
运营管理
程序设计语言
作者
Pranav Rajpurkar,Jeremy Irvin,Kaylie Zhu,Brandon Yang,Hershel Mehta,Tony Duan,Daisy Yi Ding,Aarti Bagul,Curtis P. Langlotz,Katie Shpanskaya,Matthew P. Lungren,Andrew Y. Ng
出处
期刊:Cornell University - arXiv
日期:2017-01-01
被引量:1344
标识
DOI:10.48550/arxiv.1711.05225
摘要
We develop an algorithm that can detect pneumonia from chest X-rays at a level exceeding practicing radiologists. Our algorithm, CheXNet, is a 121-layer convolutional neural network trained on ChestX-ray14, currently the largest publicly available chest X-ray dataset, containing over 100,000 frontal-view X-ray images with 14 diseases. Four practicing academic radiologists annotate a test set, on which we compare the performance of CheXNet to that of radiologists. We find that CheXNet exceeds average radiologist performance on the F1 metric. We extend CheXNet to detect all 14 diseases in ChestX-ray14 and achieve state of the art results on all 14 diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI