高光谱成像
维加维斯
营养物
深度学习
均方误差
环境科学
卷积神经网络
计算机科学
遥感
人工智能
模式识别(心理学)
数学
生物
统计
生态学
地理
医学
替代医学
病理
中医药
作者
Youyou Wang,Feng Xiong,Yue Zhang,Siman Wang,Yuwei Yuan,Cuncun Lu,Jing Nie,Tiegui Nan,Bin Yang,Luqi Huang,Jian Yang
出处
期刊:Food Chemistry
[Elsevier]
日期:2022-10-03
卷期号:404: 134503-134503
被引量:41
标识
DOI:10.1016/j.foodchem.2022.134503
摘要
Coix seed (CS, Coix lachryma-jobi L. var. ma-yuen (Roman.) Stapf) has rich nutrients, including starch, protein and oil. The geographical origin with a protected geographical indication and high levels of nutrient contents ensures the quality of CS, but non-destructive and rapid methods for predicting these quality indicators remain to be explored. This paper proposed hyperspectral imaging (HSI) assisted with the integrated deep learning models of attention mechanism (AM), convolutional neural networks, and long short-term memory. The method achieved the effective wavelengths selection, the highest prediction accuracy for production region discrimination and the lowest mean absolute error and root mean squared error for nutrient contents prediction. Moreover, the wavelengths selected via the AM model were explicable and reliable for predicting the geographical origins and nutrient contents. The proposed combination of HSI with integrated deep learning models has great potential in the quality evaluation of CS.
科研通智能强力驱动
Strongly Powered by AbleSci AI