可逆矩阵
数学
不平等
希尔伯特空间
纯数学
域代数上的
数学分析
作者
Masatoshi Fujii,Ritsuo Nakamoto
出处
期刊:Trends in mathematics
日期:2022-01-01
卷期号:: 41-67
标识
DOI:10.1007/978-3-031-02104-6_2
摘要
The Ando-Hiai inequality says that if A# α B ≤ I for a fixed α ∈ [0, 1] and positive invertible operators A, B on a Hilbert space, then A r # α B r ≤ I for r ≥ 1, where # α is the α-geometric mean defined by $$A \#_\alpha B=A^{\frac 12}(A^{-\frac 12}BA^{-\frac 12})^\alpha A^{\frac 12}$$ . This chapter is devoted by extensions and applications of Ando-Hiai inequality. It is closely related to Furuta inequality, Bebiano-Lemos-Providência inequality and grand Furuta inequality. Consequently they are given useful extensions.
科研通智能强力驱动
Strongly Powered by AbleSci AI