Machine learning based IoT system for secure traffic management and accident detection in smart cities

先进的交通管理系统 交通拥挤 计算机科学 智能交通系统 传输(电信) 管理制度 通知系统 浮动车数据 运输工程 计算机安全 实时计算 计算机网络 电信 工程类 运营管理
作者
Saravana Balaji B,Prasanalakshmi Balaji,Asmaa Munshi,Wafa Almukadi,T. N. Prabhu,K. Venkatachalam,Mohamed Abouhawwash
出处
期刊:PeerJ [PeerJ]
卷期号:9: e1259-e1259 被引量:18
标识
DOI:10.7717/peerj-cs.1259
摘要

In smart cities, the fast increase in automobiles has caused congestion, pollution, and disruptions in the transportation of commodities. Each year, there are more fatalities and cases of permanent impairment due to everyday road accidents. To control traffic congestion, provide secure data transmission also detecting accidents the IoT-based Traffic Management System is used. To identify, gather, and send data, autonomous cars, and intelligent gadgets are equipped with an IoT-based ITM system with a group of sensors. The transport system is being improved via machine learning. In this work, an Adaptive Traffic Management system (ATM) with an accident alert sound system (AALS) is used for managing traffic congestion and detecting the accident. For secure traffic data transmission Secure Early Traffic-Related EveNt Detection (SEE-TREND) is used. The design makes use of several scenarios to address every potential problem with the transportation system. The suggested ATM model continuously modifies the timing of traffic signals based on the volume of traffic and anticipated movements from neighboring junctions. By progressively allowing cars to pass green lights, it considerably reduces traveling time. It also relieves traffic congestion by creating a seamless transition. The results of the trial show that the suggested ATM system fared noticeably better than the traditional traffic-management method and will be a leader in transportation planning for smart-city-based transportation systems. The suggested ATM-ALTREND solution provides secure traffic data transmission that decreases traffic jams and vehicle wait times, lowers accident rates, and enhances the entire travel experience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elddis完成签到,获得积分10
1秒前
科研通AI5应助ASZXDW采纳,获得10
1秒前
1秒前
方囧发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI5应助Candice采纳,获得10
3秒前
3秒前
3秒前
CHEN完成签到,获得积分20
3秒前
3秒前
3秒前
领导范儿应助彩霞采纳,获得10
4秒前
4秒前
香蕉觅云应助XXXXbb采纳,获得10
4秒前
小蘑菇应助笗一一采纳,获得10
5秒前
hhy发布了新的文献求助10
6秒前
7秒前
Elddis发布了新的文献求助10
7秒前
7秒前
踏山河完成签到,获得积分10
8秒前
8秒前
8秒前
sy发布了新的文献求助10
9秒前
nbl发布了新的文献求助10
9秒前
9秒前
10秒前
nicolight完成签到,获得积分20
11秒前
刘昕帛完成签到,获得积分10
11秒前
豆子发布了新的文献求助10
11秒前
11秒前
彭于晏应助liu采纳,获得10
12秒前
zhaof完成签到 ,获得积分10
12秒前
当当发布了新的文献求助10
13秒前
13秒前
14秒前
郝南烟发布了新的文献求助30
14秒前
ASZXDW发布了新的文献求助10
15秒前
iNk应助三泥采纳,获得10
15秒前
七七七完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 530
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3579406
求助须知:如何正确求助?哪些是违规求助? 3149344
关于积分的说明 9476879
捐赠科研通 2850607
什么是DOI,文献DOI怎么找? 1567271
邀请新用户注册赠送积分活动 734033
科研通“疑难数据库(出版商)”最低求助积分说明 720346