WDAN: A Weighted Discriminative Adversarial Network With Dual Classifiers for Fine-Grained Open-Set Domain Adaptation

判别式 计算机科学 人工智能 分类 分类器(UML) 鉴别器 开放集 编码器 机器学习 人工神经网络 模式识别(心理学) 数学 电信 探测器 操作系统 离散数学
作者
Jing Li,Liu Yang,Qilong Wang,Qinghua Hu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (9): 5133-5147 被引量:10
标识
DOI:10.1109/tcsvt.2023.3249200
摘要

Deep neural networks usually depend on substantial labeled data and suffer from poor generalization to new domains. Domain adaptation can be used to resolve these issues, using a classifier trained with a label-rich source and transferred to a label-scarce target domain. Traditional domain adaptation adopts the close-set assumption that both domains share the same classes. However, real-world applications operate in an open-set scenario where target domains have private categories. This aspect is considered by open-set domain adaptation (OSDA). Nevertheless, current OSDA benchmarks lack clear definitions of semantic classes that are at the core of the open-set concept. In this study, we propose fine-grained visual categorization (FGVC) datasets containing specific descriptions of semantic classes as a solution, introducing the new setting named fine-grained OSDA. Owing to the entanglement among FGVC, unknown class recognition, and domain adaptation, fine-grained OSDA is a challenging task. For this reason, we designed a weighted discriminative adversarial network with dual classifiers (WDAN). It utilizes a selective transformer encoder with overlapping patches and supervised contrastive learning to extract features suitable for FGVC, adversarial training with domain-specific discriminative information to recognize target-private classes, and a weighted conditional domain discriminator to learn domain-invariant features for domain adaptation. Extensive experiments on five benchmarks, including one newly built, demonstrated that WDAN outperforms state-of-the-art methods. This work fills the existing gap in benchmarks for fine-grained OSDA, promoting future developments of real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一二发布了新的文献求助10
1秒前
1秒前
Atan发布了新的文献求助30
2秒前
3秒前
3秒前
4秒前
Ava应助杨树采纳,获得10
4秒前
4秒前
薄荷味发布了新的文献求助10
4秒前
cml发布了新的文献求助10
6秒前
浦肯野应助欢呼的音响采纳,获得20
6秒前
8秒前
阳佟之槐发布了新的文献求助10
8秒前
在水一方应助一二采纳,获得10
9秒前
Orange应助卡农采纳,获得10
9秒前
9秒前
新新完成签到,获得积分10
10秒前
10秒前
wanci应助sun采纳,获得10
10秒前
CodeCraft应助饱满黎昕采纳,获得10
11秒前
白云朵儿发布了新的文献求助10
12秒前
小笼包完成签到,获得积分20
13秒前
深情安青应助唐博凡采纳,获得10
13秒前
科研通AI5应助小孟要努力采纳,获得10
13秒前
FashionBoy应助nassim采纳,获得10
14秒前
袁大头发布了新的文献求助10
14秒前
欢呼的音响应助文件撤销了驳回
14秒前
14秒前
yilin完成签到,获得积分10
14秒前
小笼包发布了新的文献求助30
16秒前
生动的煎蛋完成签到,获得积分10
17秒前
所所应助不想读文献啊采纳,获得10
18秒前
共享精神应助月色采纳,获得10
18秒前
celine完成签到,获得积分10
18秒前
王三渡发布了新的文献求助10
18秒前
19秒前
独特夜绿发布了新的文献求助10
19秒前
传奇3应助o30采纳,获得10
21秒前
22秒前
科研通AI5应助amazing39采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514884
求助须知:如何正确求助?哪些是违规求助? 3097246
关于积分的说明 9234750
捐赠科研通 2792216
什么是DOI,文献DOI怎么找? 1532342
邀请新用户注册赠送积分活动 711969
科研通“疑难数据库(出版商)”最低求助积分说明 707062