Meta-Transfer Metric Learning for Time Series Classification in 6G-Supported Intelligent Transportation Systems

人工智能 计算机科学 机器学习 分类器(UML) 学习迁移 深度学习 卷积神经网络 人工神经网络 学习分类器系统 特征提取 模式识别(心理学)
作者
Le Sun,Jiancong Liang,Chunjiong Zhang,Di Wu,Yanchun Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:22
标识
DOI:10.1109/tits.2023.3250962
摘要

Deep learning-based time series classification in 6G-supported Intelligent Transportation Systems (ITS) helps transport decision-making. Deep learning classifier training necessitates a large amount of labeled data for feature extraction. Labeling time series data in 6G-supported ITS is tough. Meta-learning can be used to train deep classifiers with limited data. However, in meta-learning, the tasks are frequently modeled by a low-complexity base learner. It is unable to use more complicate and powerful structures. The meta-learning-pretrained classifier can only perform new classification problems with the same number of classes. Most pre-training strategies do not prioritize enhancing the pre-training phase’s convergence rate and lowering the computational cost. Most research work aims to improve classification performance by increasing the complexity of the classification model. However, this raises computing costs. In this paper, we propose a one-dimensional Multi-Scale Dilated Convolution Neural Network time series classifier (MSDCNN). MSDCNN combines multi-scale CNN and dilated CNN. It can extract multi-scale characteristics from time series and reduce the complexity of the classifier. Furthermore, we propose a pre-training strategy, called Meta-transfer metric Learning using Scale function (MLS). MLS allows the classifier to gain experience from different tasks with various numbers of classes. Experiments show that MLS reduces pre-training computation costs during the pre-training phase. The pre-trained classifier, without using any fine tuning techniques, achieves the highest accuracy by comparing with the state-of-the-art methods. Finally, we present a case study of applying MSDCNN and MLS to detect road accidents in 6G-supported transportation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
Hello应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得30
1秒前
lh应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得100
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得50
1秒前
dy完成签到 ,获得积分10
1秒前
2秒前
2秒前
劲秉应助科研通管家采纳,获得150
2秒前
Akim应助开心采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Noel应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
追寻善斓应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
Noel应助科研通管家采纳,获得10
3秒前
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
CYH完成签到,获得积分10
3秒前
劲秉应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
4秒前
QOP应助jing采纳,获得10
4秒前
明亮翠桃发布了新的文献求助10
4秒前
欧阳静芙发布了新的文献求助10
4秒前
5秒前
佳小佳完成签到,获得积分10
5秒前
高兴天空发布了新的文献求助10
6秒前
一个搞不懂晶体学的小牛马完成签到,获得积分10
9秒前
随性完成签到,获得积分10
9秒前
15秒前
凌儿响叮当完成签到 ,获得积分10
16秒前
完美世界应助xin采纳,获得10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671775
求助须知:如何正确求助?哪些是违规求助? 3228411
关于积分的说明 9780180
捐赠科研通 2938852
什么是DOI,文献DOI怎么找? 1610260
邀请新用户注册赠送积分活动 760634
科研通“疑难数据库(出版商)”最低求助积分说明 736119