Time-Aware Data Partition Optimization and Heterogeneous Task Scheduling Strategies in Spark Clusters

计算机科学 分布式计算 动态优先级调度 调度(生产过程) 作业调度程序 大数据 SPARK(编程语言) 公平份额计划 单调速率调度 划分问题 固定优先级先发制人调度 分拆(数论) 并行计算 数学优化 排队 数据挖掘 计算机网络 服务质量 数学 程序设计语言 组合数学
作者
SenXing Lu,Mingming Zhao,Chunlin Li,Quanbing Du,Yingwei Luo
出处
期刊:The Computer Journal [Oxford University Press]
标识
DOI:10.1093/comjnl/bxad017
摘要

Abstract The Spark computing framework provides an efficient solution to address the major requirements of big data processing, but data partitioning and job scheduling in the Spark framework are the two major bottlenecks that limit Spark’s performance. In the Spark Shuffle phase, the data skewing problem caused by unbalanced data partitioning leads to the problem of increased job completion time. In response to the above problems, a balanced partitioning strategy for intermediate data is proposed in this article, which considers the characteristics of intermediate data, establishes a data skewing model and proposes a dynamic partitioning algorithm. In Spark heterogeneous clusters, because of the differences in node performance and task requirements, the default task scheduling algorithm cannot complete scheduling efficiently, which leads to low system task processing efficiency. In order to deal with the above problems, an efficient job scheduling strategy is proposed in this article, which integrates node performance and task requirements, and proposes a task scheduling algorithm using greedy strategy. The experimental results prove that the dynamic partitioning algorithm for intermediate data proposed in this article effectively alleviates the problem that data skew leads to the decrease of system task processing efficiency and shortens the overall task completion time. The efficient job scheduling strategy proposed in this article can efficiently complete the job scheduling tasks under heterogeneous clusters, allocate jobs to nodes in a balanced manner, decrease the overall job completion time and increase the system resource utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YANG完成签到 ,获得积分10
1秒前
2秒前
爱静静应助漂亮的冰菱采纳,获得30
2秒前
沉默的友安完成签到 ,获得积分10
3秒前
3秒前
wenjun发布了新的文献求助10
4秒前
老八完成签到,获得积分10
4秒前
asipilin发布了新的文献求助10
4秒前
SciGPT应助激昂的背包采纳,获得10
5秒前
7秒前
asipilin完成签到,获得积分10
7秒前
8秒前
Zhaoyuemeng完成签到 ,获得积分10
8秒前
123完成签到,获得积分10
8秒前
9秒前
李健的小迷弟应助shelly采纳,获得10
11秒前
Jasper应助鲤鱼怀绿采纳,获得10
11秒前
几酌应助zhen采纳,获得10
14秒前
研友_VZG7GZ应助Laniakea采纳,获得10
14秒前
Lucas应助猛犸象冲冲冲采纳,获得10
15秒前
dddddddio完成签到 ,获得积分10
15秒前
Lucas应助端庄书雁采纳,获得10
15秒前
妩媚的强炫完成签到,获得积分10
15秒前
16秒前
脑洞疼应助扒开皮皮采纳,获得10
18秒前
坚定的白薇完成签到,获得积分20
18秒前
19秒前
19秒前
20秒前
kk完成签到,获得积分20
20秒前
小蘑菇应助郝宝真采纳,获得10
21秒前
郭志康完成签到,获得积分10
22秒前
22秒前
lvyehan完成签到,获得积分10
22秒前
12345678发布了新的文献求助30
23秒前
白云四季完成签到,获得积分10
23秒前
24秒前
Dong关注了科研通微信公众号
24秒前
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162753
求助须知:如何正确求助?哪些是违规求助? 2813664
关于积分的说明 7901471
捐赠科研通 2473244
什么是DOI,文献DOI怎么找? 1316693
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175