Cross-Modal Fusion Convolutional Neural Networks With Online Soft-Label Training Strategy for Mechanical Fault Diagnosis

过度拟合 计算机科学 卷积神经网络 人工智能 断层(地质) 特征(语言学) 特征学习 情态动词 模式识别(心理学) 机器学习 特征提取 过程(计算) 深度学习 人工神经网络 数据挖掘 语言学 哲学 化学 地震学 高分子化学 地质学 操作系统
作者
Yadong Xu,Ke Feng,Xiaoan Yan,Xin Sheng,Beibei Sun,Zheng Liu,Ruqiang Yan
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 73-84 被引量:24
标识
DOI:10.1109/tii.2023.3256400
摘要

CNN-based fault detection approaches based on multisource signals have attracted increasing interest from the research community and industrial practices, thanks to the powerful feature representation capability of CNN and the rapid development of sensor technology. Various strategies have been applied in existing CNN-based diagnostic models to learn features from 1D real-valued multivariate data. However, the distribution gap and the intrinsic correlations among multisource mechanical signals during the learning process have been rarely considered, which may lead to suboptimal fault identification results. To tackle this issue, this paper proposes a cross-modal fusion convolutional neural network (CMFCNN) for mechanical fault diagnosis, which performs modality-specific and cross-modal feature representation on multisource data. Specifically, CMFCNN adopts two parallel modality-specific networks and a cross-modal knowledge-sharing network to fully explore independent and shared features from the multisource mechanical signals. To achieve effective feature propagation and fusion, a cross-modal fusion module (CMF) is introduced to integrate cross-modal features and pass the fused information to the next layer. Moreover, to alleviate overfitting and achieve a better diagnostic performance of the framework, an online soft label training (OSLT) algorithm is adopted in the CMFCNN training phase. Extensive experimental results on the cylindrical rolling bearing dataset and the planetary gearbox dataset validate that the proposed CMFCNN outperforms seven state-of-the-art methods significantly, especially under strong noise conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
噜啦噜啦嘞完成签到,获得积分10
1秒前
CHANG完成签到,获得积分10
2秒前
2秒前
2秒前
脑洞疼应助朴实的星星采纳,获得10
3秒前
达不溜的话语权完成签到,获得积分10
5秒前
6秒前
刘大强发布了新的文献求助10
6秒前
申申发布了新的文献求助10
6秒前
Wd发布了新的文献求助10
8秒前
9秒前
和谐的阁完成签到,获得积分10
10秒前
Steven发布了新的文献求助10
12秒前
华仔应助达不溜的话语权采纳,获得10
12秒前
13秒前
13秒前
13秒前
寒松发布了新的文献求助10
15秒前
Jasper应助傻傻的哲瀚采纳,获得10
16秒前
晶晶儿发布了新的文献求助20
17秒前
17秒前
JamesPei应助yu采纳,获得10
17秒前
ljnbb1发布了新的文献求助10
17秒前
天天天蓝完成签到,获得积分10
18秒前
科研通AI2S应助冬瓜采纳,获得10
19秒前
19秒前
20秒前
franca2005完成签到 ,获得积分10
20秒前
无牙完成签到 ,获得积分10
21秒前
21秒前
Doreen发布了新的文献求助10
21秒前
Lance发布了新的文献求助10
21秒前
程未央_12发布了新的文献求助10
21秒前
dsi完成签到,获得积分10
22秒前
23秒前
标致冰海发布了新的文献求助10
23秒前
flysky发布了新的文献求助30
24秒前
李健的小迷弟应助123采纳,获得10
24秒前
SciGPT应助ljnbb1采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076389
求助须知:如何正确求助?哪些是违规求助? 2729242
关于积分的说明 7508108
捐赠科研通 2377477
什么是DOI,文献DOI怎么找? 1260632
科研通“疑难数据库(出版商)”最低求助积分说明 611101
版权声明 597194