Ultrasoft edge-labelled hydrogel sensors reveal internal tissue stress patterns in invasive engineered tumors

材料科学 内应力 生物医学工程 机械生物学 生物物理学 纳米技术 复合材料 医学 生物 解剖
作者
Chang Kyu Lee,Christina-Marie Boghdady,Virginie Lelarge,Richard L. Leask,Luke McCaffrey,Christopher Moraes
出处
期刊:Biomaterials [Elsevier BV]
卷期号:296: 122073-122073
标识
DOI:10.1016/j.biomaterials.2023.122073
摘要

Measuring internal mechanical stresses within 3D tissues can provide important insights into drivers of morphogenesis and disease progression. Cell-sized hydrogel microspheres have recently emerged as a powerful technique to probe tissue mechanobiology, as they can be sufficiently soft as to deform within remodelling tissues, and optically imaged to measure internal stresses. However, measuring stresses at resolutions of ∼10 Pa requires ultrasoft, low-polymer content hydrogel formulations that are challenging to label with sufficiently fluorescent materials to support repeated measurements, particularly in optically dense tissues over 100 μm thick, as required in cancer tumor models. Here, we leverage thermodynamic partitioning of hydrogel components to create “edge-labelled” ultrasoft hydrogel microdroplets, in a single polymerization step. Bright and stable fluorescent nanoparticles preferentially polymerize at the hydrogel droplet interface, and can be used to repeatedly track sensor surfaces over long-term experiments, even when embedded deep in light-scattering tissues. We utilize these edge-labelled microspherical stress gauges (eMSGs) in inducible breast cancer tumor models of invasion, and demonstrate distinctive internal stress patterns that arise from cell-matrix interactions at different stages of breast cancer progression. Our studies demonstrate a long-term macroscale compaction of the tumor during matrix encapsulation, but only a short-term increase in local stress as non-invasive tumors rapidly make small internal reorganizations that reduce the mechanical stress to baseline levels. In contrast, once invasion programs are initiated, internal stress throughout the tumor is negligible. These findings suggest that internal tumor stresses may initially prime the cells to invade, but are lost once invasion occurs. Together, this work demonstrates that mapping internal mechanical stress in tumors may have utility in advancing cancer prognostic strategies, and that eMSGs can have broad utility in understanding dynamic mechanical processes of disease and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Baili发布了新的文献求助10
2秒前
5秒前
赘婿应助大气的莆采纳,获得10
7秒前
科研通AI2S应助upsoar采纳,获得10
8秒前
善学以致用应助645654564采纳,获得10
9秒前
9秒前
韩_完成签到,获得积分10
9秒前
隐形曼青应助体贴的之卉采纳,获得10
13秒前
幸福大白发布了新的文献求助10
13秒前
小巧的冰烟应助深情夏彤采纳,获得10
14秒前
14秒前
未来星发布了新的文献求助10
14秒前
stretchability完成签到,获得积分10
16秒前
wzx完成签到,获得积分10
18秒前
18秒前
烟花应助Medicovv采纳,获得10
18秒前
李健的小迷弟应助victor采纳,获得10
20秒前
22秒前
大气的莆发布了新的文献求助10
23秒前
upsoar发布了新的文献求助10
27秒前
小敏哼应助maguodrgon采纳,获得10
27秒前
鲤鱼白玉完成签到,获得积分10
27秒前
幸福大白发布了新的文献求助10
28秒前
彭于晏应助明天见采纳,获得10
28秒前
31秒前
31秒前
哒哒哒完成签到,获得积分10
32秒前
体贴的之卉完成签到,获得积分20
33秒前
33秒前
Thanatos完成签到,获得积分10
34秒前
AllWeKnow完成签到,获得积分10
35秒前
哒哒哒发布了新的文献求助10
35秒前
Arzu完成签到,获得积分20
36秒前
36秒前
37秒前
深林盛世完成签到,获得积分10
39秒前
一块巧克力完成签到,获得积分10
39秒前
热心的网民C完成签到,获得积分10
39秒前
fangjing完成签到,获得积分10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993533
求助须知:如何正确求助?哪些是违规求助? 3534281
关于积分的说明 11265112
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809710