VIS/NIR hyperspectral imaging with artificial neural networks to evaluate the content of thiobarbituric acid reactive substances in beef muscle

高光谱成像 TBARS公司 人工智能 硫代巴比妥酸 化学计量学 生物系统 模式识别(心理学) 人工神经网络 化学 数据集 集合(抽象数据类型) 计算机科学 色谱法 抗氧化剂 生物 程序设计语言 生物化学 脂质过氧化
作者
Sung-Min Park,Myongkyoon Yang,Dong-Gyun Yim,Cheorun Jo,Ghiseok Kim
出处
期刊:Journal of Food Engineering [Elsevier BV]
卷期号:350: 111500-111500 被引量:12
标识
DOI:10.1016/j.jfoodeng.2023.111500
摘要

Machine learning models were developed to predict the degree of rancidity of beef by a non-destructive method using a near infrared hyperspectral image acquisition system. The beef subject to the experiment was naturally oxidized during the 15-day cooling process. In a darkroom environment, hyperspectral data cubes were collected using a data acquisition device. Additionally, a technique was developed to selectively extract lean-meat spectra from hyperspectral data obtained from beef that was refrigerated for a variety of lengths of time. Thiobarbituric acid reactive substances (TBARS) experiment was performed in a traditional method to secure reference values for the rancidity level of the sample. Spectra were extracted through data selection and separated by training set and test set. PLSR, ANN, and 1D-CNN techniques were applied to model development. Variable Importance in Projection (VIP) score for the wavelength band was calculated, and the portion judged as valid was cut out to generate a reduced data set. Chemical maps were created for each developed model to visualize the performance of the model. As a result of the development, it was confirmed that the rancidity level of beef could be predicted through a model generated by hyperspectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
南宫映榕完成签到,获得积分10
1秒前
peiqi佩奇完成签到,获得积分10
1秒前
FashionBoy应助3131879775采纳,获得10
1秒前
龙虾发票完成签到,获得积分10
1秒前
zty完成签到,获得积分10
1秒前
2秒前
ZZZ完成签到,获得积分10
2秒前
科研老白完成签到,获得积分10
2秒前
2秒前
Focus完成签到,获得积分20
2秒前
孟严青完成签到,获得积分0
3秒前
量子星尘发布了新的文献求助10
3秒前
合适台灯发布了新的文献求助30
3秒前
4秒前
杨幂发布了新的文献求助10
4秒前
XT666完成签到,获得积分10
4秒前
学术混子完成签到,获得积分10
4秒前
AA完成签到,获得积分10
4秒前
灵巧代柔完成签到,获得积分10
5秒前
糖豆豆吃豆豆完成签到,获得积分10
5秒前
无辜竺完成签到 ,获得积分10
6秒前
7秒前
xiongyuan完成签到,获得积分10
7秒前
司徒不正发布了新的文献求助30
8秒前
追寻的访烟完成签到,获得积分10
8秒前
xiuwen发布了新的文献求助10
9秒前
9秒前
学术混子发布了新的文献求助10
9秒前
无聊的老姆完成签到 ,获得积分10
10秒前
岁月如酒发布了新的文献求助10
10秒前
噜噜噜噜噜完成签到,获得积分10
10秒前
yookia应助一人一般采纳,获得10
10秒前
Hello应助张远幸采纳,获得10
11秒前
FireNow完成签到,获得积分10
11秒前
Muhammad发布了新的文献求助10
12秒前
restudy68完成签到,获得积分10
12秒前
情怀应助美满的天薇采纳,获得10
12秒前
我还不困完成签到,获得积分10
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479