VIS/NIR hyperspectral imaging with artificial neural networks to evaluate the content of thiobarbituric acid reactive substances in beef muscle

高光谱成像 TBARS公司 人工智能 硫代巴比妥酸 化学计量学 生物系统 模式识别(心理学) 人工神经网络 化学 数据集 集合(抽象数据类型) 计算机科学 色谱法 抗氧化剂 生物 程序设计语言 生物化学 脂质过氧化
作者
Sung-Min Park,Myongkyoon Yang,Dong-Gyun Yim,Cheorun Jo,Ghiseok Kim
出处
期刊:Journal of Food Engineering [Elsevier]
卷期号:350: 111500-111500 被引量:12
标识
DOI:10.1016/j.jfoodeng.2023.111500
摘要

Machine learning models were developed to predict the degree of rancidity of beef by a non-destructive method using a near infrared hyperspectral image acquisition system. The beef subject to the experiment was naturally oxidized during the 15-day cooling process. In a darkroom environment, hyperspectral data cubes were collected using a data acquisition device. Additionally, a technique was developed to selectively extract lean-meat spectra from hyperspectral data obtained from beef that was refrigerated for a variety of lengths of time. Thiobarbituric acid reactive substances (TBARS) experiment was performed in a traditional method to secure reference values for the rancidity level of the sample. Spectra were extracted through data selection and separated by training set and test set. PLSR, ANN, and 1D-CNN techniques were applied to model development. Variable Importance in Projection (VIP) score for the wavelength band was calculated, and the portion judged as valid was cut out to generate a reduced data set. Chemical maps were created for each developed model to visualize the performance of the model. As a result of the development, it was confirmed that the rancidity level of beef could be predicted through a model generated by hyperspectral data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助美好斓采纳,获得10
1秒前
1秒前
1秒前
甜甜的爆米花完成签到,获得积分10
1秒前
浮游应助快乐傲南采纳,获得10
1秒前
肖宇完成签到,获得积分10
1秒前
cloud完成签到,获得积分10
2秒前
研友_VZG7GZ应助Jattck采纳,获得10
2秒前
土豆发布了新的文献求助10
3秒前
依风发布了新的文献求助10
3秒前
3秒前
3秒前
1357695589发布了新的文献求助10
3秒前
3秒前
4秒前
小强发布了新的文献求助30
5秒前
轻松煎饼发布了新的文献求助10
5秒前
5秒前
彩色铅笔发布了新的文献求助10
5秒前
5秒前
6秒前
无情的函完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
Denny发布了新的文献求助10
7秒前
kbkyvuy发布了新的文献求助10
7秒前
cheng完成签到,获得积分10
8秒前
8秒前
十一发布了新的文献求助10
8秒前
向日葵发布了新的文献求助10
8秒前
8秒前
原本发布了新的文献求助10
8秒前
Aloha发布了新的文献求助30
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
漠雨寒灯发布了新的文献求助10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274