A novel hybrid simplified group BWM and multi-criteria sorting approach for stock portfolio selection

计算机科学 分类 文件夹 加权 数学优化 选择(遗传算法) 决策者 限制 库存(枪支) 证券交易所 数据挖掘 运筹学 机器学习 算法 数学 财务 放射科 工程类 经济 金融经济学 机械工程 医学
作者
Mir Seyed Mohammad Mohsen Emamat,Maghsoud Amiri,Mohammad Reza Mehregan,Mohammad Taghi Taghavifard
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:215: 119332-119332 被引量:25
标识
DOI:10.1016/j.eswa.2022.119332
摘要

Many real-life issues can be modeled as multi-criteria sorting problems. In this type of problem, a set of options are assigned to predefined classes. This research aims to propose a new hybrid approach including simplified group best–worst and multi-criteria sorting methods to classify options considering decision-maker constraints. It is crucial to consider such constraints, and ignoring them can make the results ineffective for the decision-maker. The method developed in this study for weighting the criteria can be considered the most unmixed group best–worst method ever proposed, as no optimization model and specialized software are needed to solve it. In this research, a multi-criteria sorting method is also suggested. The developed method compares alternatives with limiting profiles and then classifies alternatives based on their distance from the limiting profiles. This method can consider investor preferences, such as the number of alternatives in categories or the maximum number of stocks allowed from each industry in the stock portfolio. The proposed approach is used in a real case study of stock portfolio selection in the Tehran Stock Exchange. The results of the methods proposed in this study were compared with the results of the previous methods using numerical examples and a real case study. The results show that the developed methods are valid and accurate. The suggested approach helps managers to include their constraints in the decision-making process and can be applied to real-world problems with a classification nature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辣辣完成签到,获得积分10
刚刚
mm完成签到 ,获得积分10
刚刚
修fei完成签到 ,获得积分10
1秒前
玩命做科研完成签到 ,获得积分10
1秒前
优雅的WAN完成签到 ,获得积分10
1秒前
英姑应助迅速哈密瓜采纳,获得10
1秒前
潮汐完成签到,获得积分10
1秒前
Rain完成签到,获得积分20
2秒前
2秒前
nya完成签到,获得积分10
2秒前
哈哈哈发布了新的文献求助10
2秒前
蛋白工人完成签到,获得积分10
3秒前
3秒前
ligy完成签到 ,获得积分10
4秒前
4秒前
charon完成签到 ,获得积分10
4秒前
4秒前
DEUX完成签到,获得积分10
4秒前
ZD完成签到,获得积分20
4秒前
称心不尤完成签到,获得积分10
4秒前
Zx_1993完成签到,获得积分0
5秒前
5秒前
5秒前
一行完成签到,获得积分10
6秒前
韩麒嘉完成签到,获得积分10
6秒前
mu完成签到 ,获得积分20
6秒前
fox完成签到 ,获得积分10
6秒前
犹豫的寄云完成签到,获得积分10
6秒前
6秒前
noesouth完成签到 ,获得积分10
6秒前
xiaxia关注了科研通微信公众号
6秒前
jade完成签到,获得积分10
6秒前
6秒前
Yi发布了新的文献求助10
7秒前
7秒前
陌上尘发布了新的文献求助10
7秒前
冷傲的紫寒完成签到 ,获得积分10
8秒前
zhzh0618发布了新的文献求助10
8秒前
孙严青发布了新的文献求助10
8秒前
z_完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959