A novel hybrid simplified group BWM and multi-criteria sorting approach for stock portfolio selection

计算机科学 分类 文件夹 加权 数学优化 选择(遗传算法) 决策者 限制 库存(枪支) 证券交易所 数据挖掘 运筹学 机器学习 算法 数学 财务 放射科 工程类 经济 金融经济学 机械工程 医学
作者
Mir Seyed Mohammad Mohsen Emamat,Maghsoud Amiri,Mohammad Reza Mehregan,Mohammad Taghi Taghavifard
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:215: 119332-119332 被引量:25
标识
DOI:10.1016/j.eswa.2022.119332
摘要

Many real-life issues can be modeled as multi-criteria sorting problems. In this type of problem, a set of options are assigned to predefined classes. This research aims to propose a new hybrid approach including simplified group best–worst and multi-criteria sorting methods to classify options considering decision-maker constraints. It is crucial to consider such constraints, and ignoring them can make the results ineffective for the decision-maker. The method developed in this study for weighting the criteria can be considered the most unmixed group best–worst method ever proposed, as no optimization model and specialized software are needed to solve it. In this research, a multi-criteria sorting method is also suggested. The developed method compares alternatives with limiting profiles and then classifies alternatives based on their distance from the limiting profiles. This method can consider investor preferences, such as the number of alternatives in categories or the maximum number of stocks allowed from each industry in the stock portfolio. The proposed approach is used in a real case study of stock portfolio selection in the Tehran Stock Exchange. The results of the methods proposed in this study were compared with the results of the previous methods using numerical examples and a real case study. The results show that the developed methods are valid and accurate. The suggested approach helps managers to include their constraints in the decision-making process and can be applied to real-world problems with a classification nature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜完成签到,获得积分10
1秒前
zfh发布了新的文献求助10
2秒前
yj发布了新的文献求助10
2秒前
南海子发布了新的文献求助10
2秒前
淡然天问发布了新的文献求助10
2秒前
marc107完成签到,获得积分10
3秒前
汪金完成签到,获得积分10
3秒前
元元完成签到,获得积分10
3秒前
ZhenyuShang完成签到,获得积分10
3秒前
3秒前
西瓜发布了新的文献求助10
3秒前
Julo发布了新的文献求助10
4秒前
4秒前
kkt完成签到,获得积分10
5秒前
5秒前
三木完成签到 ,获得积分10
5秒前
默默完成签到,获得积分10
5秒前
5秒前
5秒前
maxine完成签到,获得积分10
5秒前
HH发布了新的文献求助10
5秒前
辛勤的鹰完成签到 ,获得积分10
6秒前
老大蒂亚戈完成签到,获得积分0
6秒前
小吉麻麻发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
AIUR给AIUR的求助进行了留言
7秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI6应助Amo采纳,获得30
8秒前
缥缈幻柏完成签到,获得积分20
8秒前
8秒前
Akim应助香菜味钠片采纳,获得10
8秒前
8秒前
8秒前
8秒前
nefu biology发布了新的文献求助10
8秒前
默默发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679