A novel hybrid simplified group BWM and multi-criteria sorting approach for stock portfolio selection

计算机科学 分类 文件夹 加权 数学优化 选择(遗传算法) 决策者 限制 库存(枪支) 证券交易所 数据挖掘 运筹学 机器学习 算法 数学 财务 放射科 工程类 经济 金融经济学 机械工程 医学
作者
Mir Seyed Mohammad Mohsen Emamat,Maghsoud Amiri,Mohammad Reza Mehregan,Mohammad Taghi Taghavifard
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:215: 119332-119332 被引量:25
标识
DOI:10.1016/j.eswa.2022.119332
摘要

Many real-life issues can be modeled as multi-criteria sorting problems. In this type of problem, a set of options are assigned to predefined classes. This research aims to propose a new hybrid approach including simplified group best–worst and multi-criteria sorting methods to classify options considering decision-maker constraints. It is crucial to consider such constraints, and ignoring them can make the results ineffective for the decision-maker. The method developed in this study for weighting the criteria can be considered the most unmixed group best–worst method ever proposed, as no optimization model and specialized software are needed to solve it. In this research, a multi-criteria sorting method is also suggested. The developed method compares alternatives with limiting profiles and then classifies alternatives based on their distance from the limiting profiles. This method can consider investor preferences, such as the number of alternatives in categories or the maximum number of stocks allowed from each industry in the stock portfolio. The proposed approach is used in a real case study of stock portfolio selection in the Tehran Stock Exchange. The results of the methods proposed in this study were compared with the results of the previous methods using numerical examples and a real case study. The results show that the developed methods are valid and accurate. The suggested approach helps managers to include their constraints in the decision-making process and can be applied to real-world problems with a classification nature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不吃鸡蛋吃炸蛋完成签到,获得积分10
刚刚
刚刚
1秒前
喵喵发布了新的文献求助10
1秒前
2秒前
肾宝完成签到,获得积分10
2秒前
2秒前
2秒前
haohaohao发布了新的文献求助10
3秒前
张慧杰完成签到,获得积分10
3秒前
4秒前
4秒前
CodeCraft应助aassdj采纳,获得10
4秒前
幽默的访冬完成签到,获得积分10
5秒前
玩命的紫南完成签到,获得积分10
5秒前
芒果不忙发布了新的文献求助10
7秒前
7秒前
852应助土豆公主采纳,获得10
8秒前
qingchao发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
Yh完成签到,获得积分10
10秒前
一颗松完成签到,获得积分10
11秒前
11秒前
花城诚成完成签到,获得积分10
11秒前
香蕉觅云应助lunaxia采纳,获得10
12秒前
香蕉觅云应助Lignin采纳,获得10
14秒前
qingchao完成签到,获得积分10
14秒前
lllllyyyyy完成签到,获得积分10
14秒前
杜智诺应助屿2采纳,获得10
14秒前
14秒前
Becca完成签到,获得积分10
15秒前
平淡笙发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
斯文败类应助喵喵采纳,获得10
19秒前
蟹蟹完成签到,获得积分10
20秒前
单纯的电灯胆完成签到,获得积分20
20秒前
寻123发布了新的文献求助30
20秒前
荞麦皮耶完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736878
求助须知:如何正确求助?哪些是违规求助? 5369127
关于积分的说明 15334294
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622982
邀请新用户注册赠送积分活动 1571829
关于科研通互助平台的介绍 1528648