Superaerophobic Resin‐Grafted rGO Aerogel with Boosted Product Removal Delivering High‐Performance Hydrogen Release at Ultrahigh Storage Density

氢气储存 气凝胶 脱氢 甲酸 材料科学 化学工程 吸附低温 氧化物 石墨烯 纳米技术 催化作用 化学 有机化学 冶金 工程类
作者
Qian Zhang,Bo Jiang,Bingsen Wang,Nan He,Kun Liu,Dawei Tang,Lin Li
出处
期刊:Small [Wiley]
卷期号:18 (49) 被引量:5
标识
DOI:10.1002/smll.202204647
摘要

Abstract Liquid hydrogen carriers featuring high hydrogen content, safety, and hydrogen release on demand have motivated great endeavors for sustainable hydrogen supply. Nonetheless, direct hydrogen release is limited by the ultralow hydrogen evolution rate, while the conventional manner of extra additive and solvent addition for promoting rates greatly deteriorates its hydrogen storage density. Thus, it is still challenging to simultaneously satisfy high‐performance hydrogen release and high storage density. Herein, an aerophobicity surface‐based gas–liquid interface reaction strategy is proposed, which renders rapid product removal to promote dehydrogenation, fundamentally circumventing the employment of additives and solvents. Accordingly, a hierarchically porous resin‐grafted reduced graphene oxide aerogel is designed. It imparts superaerophobic surface to facilitate product detachment from reactive sites, and the structure‐oriented interface reaction design provides product diffusion channels and reduced diffusion resistance. As a result, the aerogel harvests a record hydrogen evolution rate (347 mmol g −1 h −1 ) in an ultrahigh‐density formic acid of 19.8 g L −1 , around two times the rate promotion and ten times the density improvement compared to the state‐of‐the‐art materials and systems. The strategy presents an approach for the dehydrogenation of liquid hydrogen carriers, e.g., formic acid, formaldehyde, and hydrazine hydrate, concurrently ensuring high‐performance hydrogen release and high hydrogen storage density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助dhbt采纳,获得10
1秒前
慕华完成签到 ,获得积分10
1秒前
太渊发布了新的文献求助10
2秒前
3秒前
要减肥的乐双完成签到 ,获得积分10
3秒前
搜集达人应助核桃采纳,获得10
6秒前
7秒前
7秒前
8秒前
NexusExplorer应助小慧儿采纳,获得10
9秒前
10秒前
听海发布了新的文献求助10
10秒前
11秒前
英姑应助caizhiwei采纳,获得10
11秒前
搜集达人应助认真的豌豆采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得20
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得30
12秒前
12秒前
李健的粉丝团团长应助CCR采纳,获得30
12秒前
华仔应助科研通管家采纳,获得10
12秒前
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
13秒前
无花果应助科研通管家采纳,获得10
13秒前
13秒前
木瓜、发布了新的文献求助30
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
13秒前
机智初夏发布了新的文献求助10
14秒前
14秒前
zcydbttj2011完成签到 ,获得积分10
14秒前
adgcxvjj应助wxyllxx采纳,获得10
15秒前
wxy发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565922
求助须知:如何正确求助?哪些是违规求助? 3138683
关于积分的说明 9428454
捐赠科研通 2839408
什么是DOI,文献DOI怎么找? 1560695
邀请新用户注册赠送积分活动 729854
科研通“疑难数据库(出版商)”最低求助积分说明 717669