High Entropy Approach to Engineer Strongly Correlated Functionalities in Manganites

材料科学 凝聚态物理 超巨磁阻效应 反铁磁性 铁磁性 充电顺序 正交晶系 磁电阻 兴奋剂 结晶学 晶体结构 电荷(物理) 物理 磁场 化学 量子力学
作者
Abhishek Sarkar,Di Wang,Mohana V. Kante,Luis Eiselt,Vanessa Trouillet,Gleb A. Iankevich,Zhibo Zhang,S. S. Bhattacharya,Horst Hahn,Robert Kruk
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (2) 被引量:2
标识
DOI:10.1002/adma.202207436
摘要

Technologically relevant strongly correlated phenomena such as colossal magnetoresistance (CMR) and metal-insulator transitions (MIT) exhibited by perovskite manganites are driven and enhanced by the coexistence of multiple competing magneto-electronic phases. Such magneto-electronic inhomogeneity is governed by the intrinsic lattice-charge-spin-orbital correlations, which, in turn, are conventionally tailored in manganites via chemical substitution, charge doping, or strain engineering. Alternately, the recently discovered high entropy oxides (HEOs), owing to the presence of multiple-principal cations on a given sub-lattice, exhibit indications of an inherent magneto-electronic phase separation encapsulated in a single crystallographic phase. Here, the high entropy (HE) concept is combined with standard property control by hole doping in a series of single-phase orthorhombic HE-manganites (HE-Mn), (Gd0.25 La0.25 Nd0.25 Sm0.25 )1-x Srx MnO3 (x = 0-0.5). High-resolution transmission microscopy reveals hitherto-unknown lattice imperfections in HEOs: twins, stacking faults, and missing planes. Magnetometry and electrical measurements infer three distinct ground states-insulating antiferromagnetic, unpercolated metallic ferromagnetic, and long-range metallic ferromagnetic-coexisting or/and competing as a result of hole doping and multi-cation complexity. Consequently, CMR ≈1550% stemming from an MIT is observed in polycrystalline pellets, matching the best-known values for bulk conventional manganites. Hence, this initial case study highlights the potential for a synergetic development of strongly correlated oxides offered by the high entropy design approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
劲秉应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
4秒前
浩二发布了新的文献求助10
4秒前
7秒前
小杨完成签到,获得积分10
10秒前
13秒前
wxl完成签到 ,获得积分10
15秒前
迷路的南烟完成签到,获得积分10
15秒前
18秒前
伶俐小凝发布了新的文献求助10
18秒前
cdercder应助坦率的无剑采纳,获得20
22秒前
22秒前
zho关闭了zho文献求助
23秒前
sunny发布了新的文献求助10
24秒前
朱zhu发布了新的文献求助10
27秒前
勤劳的丹妮完成签到,获得积分10
28秒前
脑洞疼应助candice采纳,获得10
30秒前
伶俐小凝完成签到,获得积分10
30秒前
学术通zzz完成签到,获得积分0
32秒前
merrylake完成签到 ,获得积分10
34秒前
e746700020发布了新的文献求助10
36秒前
Loooong完成签到,获得积分0
36秒前
脑洞疼应助朱zhu采纳,获得10
38秒前
cmuzf完成签到,获得积分10
38秒前
入门的橙橙完成签到 ,获得积分10
38秒前
40秒前
Jasper应助sunny采纳,获得20
40秒前
一只大憨憨猫完成签到,获得积分10
40秒前
Jasper应助Akihi采纳,获得10
41秒前
41秒前
你好发布了新的文献求助10
42秒前
42秒前
42秒前
hrbykdxly发布了新的文献求助10
43秒前
ding应助健康的寄风采纳,获得10
44秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738565
求助须知:如何正确求助?哪些是违规求助? 3281918
关于积分的说明 10026959
捐赠科研通 2998717
什么是DOI,文献DOI怎么找? 1645425
邀请新用户注册赠送积分活动 782788
科研通“疑难数据库(出版商)”最低求助积分说明 749931