An advanced large-porosity porous channel structure electrode for vanadium redox flow batteries

材料科学 电极 氧化还原 多孔性 化学工程 频道(广播) 复合材料 流动电池 电气工程 化学 电解质 冶金 工程类 物理化学
作者
Yifan Zhang,Xihao Zhang,Zeyu Xu,Denghua Zhang,Wenjie Yu,Yue Zhang,Lansong Liu,Jianguo Liu,Chuanwei Yan
出处
期刊:Journal of Power Sources [Elsevier BV]
卷期号:552: 232241-232241 被引量:22
标识
DOI:10.1016/j.jpowsour.2022.232241
摘要

Electrospinning technology has been extensively used to prepare electrodes for vanadium redox flow batteries (VRFBs). Nevertheless, electrospinning carbon nanofibers (ECNFs) electrodes suffer from low porosity and poor permeability, hence significantly hindering mass transport. To solve this critical issue, a new approach to prepare porous channel electrodes with large porosity based on electrospinning technology is proposed. The electrode is fabricated by electrospinning of polyacrylonitrile and poly (methyl methacrylate) (PMMA) solutions. PMMA not only acts as a sacrificial phase to form a porous channel structure inside the fibers, but also interconnects the fibers, which significantly increases the inter-fiber pore space and enhances the mass transfer performance. Electrochemical characterizations indicate that the electrodes have a remarkably elevated electrochemical specific surface area and outstanding electrochemical performance. Owing to the well-designed large-porosity porous channel structure of the electrode, the energy efficiency of the VRFB equipped with this electrode is 74.45% at 300 mA cm −2 and 81.03% at 200 mA cm −2 , and the battery can be continuously charged and discharged for more than 1200 cycles, which demonstrates a long-term cycling stability of the electrode. All of these indicate that this efficient and durable method for propagating electrode has broad application prospects. • Prepared an electrode with porous channel structure. • The electrodes exhibit enlarged pores while retaining large specific surface areas. • The design greatly improves activity of electrodes. • The prepared electrodes enable a significant enhancement in the battery performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
taster驳回了凉凉应助
1秒前
听话的白易完成签到,获得积分20
1秒前
yangzhang完成签到,获得积分10
1秒前
超帅的豪英完成签到,获得积分10
2秒前
liam完成签到,获得积分10
3秒前
gaojing完成签到,获得积分10
4秒前
4秒前
研友_xnEOX8完成签到,获得积分10
4秒前
RMgX发布了新的文献求助10
5秒前
111完成签到,获得积分10
5秒前
机智雁凡完成签到,获得积分10
5秒前
花花完成签到 ,获得积分10
6秒前
红叶完成签到,获得积分10
6秒前
向蔚发布了新的文献求助10
6秒前
ldd完成签到,获得积分10
8秒前
坦率的惊蛰完成签到,获得积分10
8秒前
fei完成签到,获得积分10
8秒前
潇洒的白昼完成签到,获得积分10
9秒前
Owen应助赵寇采纳,获得10
9秒前
研友_xnEOX8发布了新的文献求助30
9秒前
10秒前
蓝豆子完成签到 ,获得积分10
10秒前
10秒前
无辜的夏兰完成签到,获得积分10
11秒前
weijian完成签到,获得积分10
11秒前
洪伟完成签到,获得积分10
13秒前
爽歪歪完成签到,获得积分10
13秒前
huco完成签到,获得积分10
14秒前
LI电池完成签到,获得积分10
14秒前
哈哈哈哈发布了新的文献求助10
14秒前
的地方法规完成签到,获得积分10
15秒前
15秒前
爱情哈尔完成签到,获得积分10
17秒前
我是老大应助浅笑采纳,获得150
18秒前
Lori完成签到,获得积分10
19秒前
红叶关注了科研通微信公众号
20秒前
Dinglin完成签到,获得积分10
20秒前
材料摆渡人完成签到,获得积分10
21秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259