Microwave Medical Diagnosis System With a Framework to Optimize the Antenna Configuration and Frequency of Operation Using Neural Networks

微波成像 计算机科学 人工神经网络 天线(收音机) 微波食品加热 发射机 电子工程 介电常数 频域 传输(电信) 人工智能 电信 工程类 计算机视觉 电气工程 频道(广播) 电介质
作者
Aysa Jafarifarmand,Tuba Yilmaz,İbrahim Akduman
出处
期刊:IEEE Transactions on Microwave Theory and Techniques 卷期号:70 (11): 5095-5104 被引量:1
标识
DOI:10.1109/tmtt.2022.3210202
摘要

Using artificial neural networks (NNs) in microwave medical diagnosis is recently of great interest in various problems such as early breast cancer detection, brain stroke, and leukemia monitoring. NNs facilitate the process by directly assessing the presence and properties of the tissues based on the scattered field values. Although the reported studies obtained successful results through the application of NNs to microwave diagnostic problems, they used large numbers of input data. The NN input, referred to as features, for microwave diagnosis is composed of scattered fields namely antenna transmission and reflections at the frequency of choice. Large input data increase both the number of required training samples and computational cost. Optimizing the number of antennas and frequency of operation is therefore critical to improving the performance of NN-based medical diagnosis. This work considers the correlations between the effects of different frequencies and receiver/transmitter (Rx/Tx) antennas separately in order to objectively reduce the number of features. Optimized feed-forward NNs are applied to detect the presence of object(s) with permittivity value above the predefined level within the solution domain. It is performed by designating various permittivity values to the internal object(s). Promising results were obtained by reducing the number of features approximately seven times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默顿的笔记本完成签到,获得积分20
3秒前
坦率的依风完成签到 ,获得积分10
7秒前
清爽聋五完成签到,获得积分10
9秒前
SciGPT应助科研通管家采纳,获得10
10秒前
Chirstina应助一只虎斑猫采纳,获得20
10秒前
田様应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
10秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
12秒前
铲铲完成签到,获得积分10
12秒前
13秒前
lucky莼完成签到,获得积分10
14秒前
wqy发布了新的文献求助10
16秒前
陶醉觅夏完成签到,获得积分10
17秒前
优雅冬灵发布了新的文献求助10
18秒前
18秒前
宋晓蓝完成签到,获得积分10
18秒前
情怀应助奋斗的不言采纳,获得10
19秒前
22秒前
22秒前
albertchan完成签到,获得积分10
23秒前
Trasure完成签到,获得积分10
26秒前
宋晓蓝发布了新的文献求助10
26秒前
勤劳滑板完成签到,获得积分10
26秒前
领导范儿应助大大小小采纳,获得30
26秒前
栗子鱼发布了新的文献求助10
29秒前
金三瘦发布了新的文献求助10
29秒前
33秒前
33秒前
大大小小完成签到,获得积分20
34秒前
清爽的绫完成签到,获得积分10
34秒前
lzd完成签到,获得积分10
34秒前
优雅冬灵发布了新的文献求助10
38秒前
慕容炳发布了新的文献求助10
40秒前
bkagyin应助zzz采纳,获得10
41秒前
sss555完成签到,获得积分20
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023