亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Microwave Medical Diagnosis System With a Framework to Optimize the Antenna Configuration and Frequency of Operation Using Neural Networks

微波成像 计算机科学 人工神经网络 天线(收音机) 微波食品加热 发射机 电子工程 介电常数 频域 传输(电信) 人工智能 电信 工程类 计算机视觉 电气工程 频道(广播) 电介质
作者
Aysa Jafarifarmand,Tuba Yilmaz,İbrahim Akduman
出处
期刊:IEEE Transactions on Microwave Theory and Techniques [IEEE Microwave Theory and Techniques Society]
卷期号:70 (11): 5095-5104 被引量:1
标识
DOI:10.1109/tmtt.2022.3210202
摘要

Using artificial neural networks (NNs) in microwave medical diagnosis is recently of great interest in various problems such as early breast cancer detection, brain stroke, and leukemia monitoring. NNs facilitate the process by directly assessing the presence and properties of the tissues based on the scattered field values. Although the reported studies obtained successful results through the application of NNs to microwave diagnostic problems, they used large numbers of input data. The NN input, referred to as features, for microwave diagnosis is composed of scattered fields namely antenna transmission and reflections at the frequency of choice. Large input data increase both the number of required training samples and computational cost. Optimizing the number of antennas and frequency of operation is therefore critical to improving the performance of NN-based medical diagnosis. This work considers the correlations between the effects of different frequencies and receiver/transmitter (Rx/Tx) antennas separately in order to objectively reduce the number of features. Optimized feed-forward NNs are applied to detect the presence of object(s) with permittivity value above the predefined level within the solution domain. It is performed by designating various permittivity values to the internal object(s). Promising results were obtained by reducing the number of features approximately seven times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重的泽洋完成签到 ,获得积分10
15秒前
爆米花应助动听葵阴采纳,获得10
25秒前
34秒前
35秒前
动听葵阴发布了新的文献求助10
40秒前
ieeat完成签到,获得积分10
1分钟前
1分钟前
紫色奶萨发布了新的文献求助10
1分钟前
huenguyenvan完成签到,获得积分10
1分钟前
GingerF应助淡然的妙芙采纳,获得50
1分钟前
慕青应助阳光小馒头采纳,获得10
1分钟前
1分钟前
远行客HB完成签到,获得积分10
2分钟前
李心雨发布了新的文献求助20
2分钟前
2分钟前
远行客HB发布了新的文献求助10
2分钟前
CodeCraft应助村上春树的摩的采纳,获得100
2分钟前
浮游应助李心雨采纳,获得10
2分钟前
Shandongdaxiu完成签到 ,获得积分10
2分钟前
2分钟前
英姑应助断罪残影采纳,获得10
2分钟前
3分钟前
FairyLeaf发布了新的文献求助20
3分钟前
3分钟前
3分钟前
动听葵阴发布了新的文献求助10
3分钟前
丘比特应助热情的安彤采纳,获得10
4分钟前
4分钟前
Abdurrahman完成签到,获得积分10
4分钟前
oscar完成签到,获得积分10
4分钟前
dkswy完成签到,获得积分10
4分钟前
4分钟前
科研通AI6应助泽灵采纳,获得10
4分钟前
ykssss发布了新的文献求助10
4分钟前
ykssss完成签到,获得积分10
4分钟前
5分钟前
5分钟前
宝贝丫头完成签到 ,获得积分10
5分钟前
Stata@R发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198616
求助须知:如何正确求助?哪些是违规求助? 4379557
关于积分的说明 13638287
捐赠科研通 4235728
什么是DOI,文献DOI怎么找? 2323520
邀请新用户注册赠送积分活动 1321638
关于科研通互助平台的介绍 1272661