Microwave Medical Diagnosis System With a Framework to Optimize the Antenna Configuration and Frequency of Operation Using Neural Networks

微波成像 计算机科学 人工神经网络 天线(收音机) 微波食品加热 发射机 电子工程 介电常数 频域 传输(电信) 人工智能 电信 工程类 计算机视觉 电气工程 频道(广播) 电介质
作者
Aysa Jafarifarmand,Tuba Yilmaz,İbrahim Akduman
出处
期刊:IEEE Transactions on Microwave Theory and Techniques [IEEE Microwave Theory and Techniques Society]
卷期号:70 (11): 5095-5104 被引量:1
标识
DOI:10.1109/tmtt.2022.3210202
摘要

Using artificial neural networks (NNs) in microwave medical diagnosis is recently of great interest in various problems such as early breast cancer detection, brain stroke, and leukemia monitoring. NNs facilitate the process by directly assessing the presence and properties of the tissues based on the scattered field values. Although the reported studies obtained successful results through the application of NNs to microwave diagnostic problems, they used large numbers of input data. The NN input, referred to as features, for microwave diagnosis is composed of scattered fields namely antenna transmission and reflections at the frequency of choice. Large input data increase both the number of required training samples and computational cost. Optimizing the number of antennas and frequency of operation is therefore critical to improving the performance of NN-based medical diagnosis. This work considers the correlations between the effects of different frequencies and receiver/transmitter (Rx/Tx) antennas separately in order to objectively reduce the number of features. Optimized feed-forward NNs are applied to detect the presence of object(s) with permittivity value above the predefined level within the solution domain. It is performed by designating various permittivity values to the internal object(s). Promising results were obtained by reducing the number of features approximately seven times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵7完成签到 ,获得积分10
3秒前
4秒前
5秒前
刘玉梅完成签到,获得积分10
6秒前
科研通AI2S应助sqz采纳,获得10
6秒前
6秒前
Ava应助AnnChen采纳,获得10
7秒前
nicole发布了新的文献求助10
8秒前
晨熙完成签到,获得积分10
8秒前
Hello应助清爽蹇采纳,获得10
8秒前
lllll完成签到,获得积分10
10秒前
11秒前
快乐马发布了新的文献求助10
12秒前
YORLAN完成签到 ,获得积分10
13秒前
15秒前
wying发布了新的文献求助30
15秒前
光亮远航完成签到 ,获得积分10
16秒前
18秒前
Olivia发布了新的文献求助20
20秒前
AnnChen发布了新的文献求助10
20秒前
20秒前
超级灰狼完成签到 ,获得积分10
20秒前
彭于晏应助朵朵采纳,获得30
23秒前
24秒前
传统的钧完成签到,获得积分10
26秒前
Hello应助wying采纳,获得30
27秒前
佳佳应助好久不见采纳,获得10
27秒前
28秒前
28秒前
苏苏苏发布了新的文献求助10
29秒前
29秒前
天宝完成签到,获得积分10
30秒前
医学的记忆完成签到,获得积分20
31秒前
xr发布了新的文献求助10
32秒前
大方的菠萝完成签到 ,获得积分10
32秒前
乐乐应助科研通管家采纳,获得10
33秒前
33秒前
夕诙应助科研通管家采纳,获得20
33秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
ED应助科研通管家采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343