Artificial intelligence system for automated landmark localization and analysis of cephalometry

地标 头影测量分析 头影 卷积神经网络 头影测量 计算机科学 人工智能 口腔正畸科 射线照相术 软件 模式识别(心理学) 医学 错牙合 放射科 程序设计语言 覆岩
作者
Fulin Jiang,Yutong Guo,Cai Yang,Yingjie Zhou,Yucheng Lin,Fangyuan Cheng,Shuqi Quan,Qingchen Feng,Juan Li
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:52 (1) 被引量:6
标识
DOI:10.1259/dmfr.20220081
摘要

Objectives: Cephalometric analysis is essential for diagnosis, treatment planning and outcome assessment of orthodontics and orthognathic surgery. Utilizing artificial intelligence (AI) to achieve automated landmark localization has proved feasible and convenient. However, current systems remain insufficient for clinical application, as patients exhibit various malocclusions in cephalograms produced by different manufacturers while limited cephalograms were applied to train AI in these systems. Methods: A robust and clinically applicable AI system was proposed for automatic cephalometric analysis. First, 9870 cephalograms taken by different radiography machines with various malocclusions of patients were collected from 20 medical institutions. Then 30 landmarks of all these cephalogram samples were manually annotated to train an AI system, composed of a two-stage convolutional neural network and a software-as-a-service system. Further, more than 100 orthodontists participated to refine the AI-output landmark localizations and retrain this system. Results: The average landmark prediction error of this system was as low as 0.94 ± 0.74 mm and the system achieved an average classification accuracy of 89.33%. Conclusions: An automatic cephalometric analysis system based on convolutional neural network was proposed, which can realize automatic landmark location and cephalometric measurements classification. This system showed promise in improving diagnostic efficiency in clinical circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Wri完成签到,获得积分20
1秒前
七月夏栀完成签到,获得积分10
1秒前
2秒前
2秒前
周涛发布了新的文献求助10
3秒前
超级惜芹完成签到,获得积分20
4秒前
5秒前
Wri发布了新的文献求助10
5秒前
慎独而已发布了新的文献求助10
6秒前
兴奋巧凡完成签到 ,获得积分10
6秒前
动听的一一完成签到 ,获得积分10
7秒前
Annie发布了新的文献求助10
9秒前
慕青应助潇涯采纳,获得50
10秒前
10秒前
moonlight完成签到,获得积分10
12秒前
西子阳完成签到,获得积分10
13秒前
JamesPei应助dilli采纳,获得10
13秒前
闪闪放光彩完成签到,获得积分10
14秒前
柚子应助Nuyoah采纳,获得20
16秒前
乐观的鸽子完成签到,获得积分10
16秒前
飞飞完成签到 ,获得积分10
16秒前
影子发布了新的文献求助10
16秒前
大个应助随梦而飞采纳,获得30
16秒前
Nini1203发布了新的文献求助30
17秒前
科研通AI2S应助samifranco采纳,获得10
17秒前
Vesper完成签到,获得积分10
18秒前
why完成签到,获得积分10
18秒前
任性雨筠完成签到,获得积分10
18秒前
呀呵完成签到 ,获得积分10
19秒前
老李完成签到,获得积分10
19秒前
称心的踏歌完成签到,获得积分10
20秒前
罐罐儿发布了新的文献求助10
20秒前
桐桐应助Jacob采纳,获得10
20秒前
迢迢笙箫应助大气早晨采纳,获得10
21秒前
21秒前
21秒前
shijiu发布了新的文献求助10
22秒前
zyy完成签到,获得积分10
24秒前
研友_VZG7GZ应助DAKE采纳,获得10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149784
求助须知:如何正确求助?哪些是违规求助? 2800775
关于积分的说明 7841901
捐赠科研通 2458351
什么是DOI,文献DOI怎么找? 1308425
科研通“疑难数据库(出版商)”最低求助积分说明 628499
版权声明 601706