已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Beyond images: Emerging role of Raman spectroscopy-based artificial intelligence in diagnosis of gastric neoplasia

医学 拉曼光谱 内窥镜检查 肠化生 人工智能 放射科 病理 发育不良 计算机科学 光学 物理
作者
Khek Yu Ho
出处
期刊:Chinese Journal of Cancer Research [Chinese Journal of Cancer Research]
卷期号:34 (5): 539-542 被引量:1
标识
DOI:10.21147/j.issn.1000-9604.2022.05.13
摘要

White-light endoscopy with tissue biopsy is the gold standard interface for diagnosing gastric neoplastic lesions. However, misdiagnosis of lesions is a challenge because of operator variability and learning curve issues. These issues have not been resolved despite the introduction of advanced imaging technologies, including narrow band imaging, and confocal laser endomicroscopy. To ensure consistently high diagnostic accuracy among endoscopists, artificial intelligence (AI) has recently been introduced to assist endoscopists in the diagnosis of gastric neoplasia. Current endoscopic AI systems for endoscopic diagnosis are mostly based upon interpretation of endoscopic images. In real-life application, the image-based AI system remains reliant upon skilful operators who will need to capture sufficiently good quality images for the AI system to analyze. Such an ideal situation may not always be possible in routine practice. In contrast, non-image-based AI is less constraint by these requirements. Our group has recently developed an endoscopic Raman fibre-optic probe that can be delivered into the gastrointestinal tract via the working channel of any endoscopy for Raman measurements. We have also successfully incorporated the endoscopic Raman spectroscopic system with an AI system. Proof of effectiveness has been demonstrated in in vivo studies using the Raman endoscopic system in close to 1,000 patients. The system was able to classify normal gastric tissue, gastric intestinal metaplasia, gastric dysplasia and gastric cancer, with diagnostic accuracy of >85%. Because of the excellent correlation between Raman spectra and histopathology, the Raman-AI system can provide optical diagnosis, thus allowing the endoscopists to make clinical decisions on the spot. Furthermore, by allowing non-expert endoscopists to make real-time decisions as well as expert endoscopists, the system will enable consistency of care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
iNk应助xingmeng采纳,获得10
2秒前
5秒前
6秒前
Siriya发布了新的文献求助30
7秒前
星hai完成签到,获得积分20
7秒前
10秒前
斯文败类应助拉长的博超采纳,获得10
10秒前
星hai发布了新的文献求助10
11秒前
iNk应助Blessing采纳,获得20
13秒前
慕青应助周周采纳,获得10
14秒前
英俊的铭应助周周采纳,获得10
14秒前
小蘑菇应助周周采纳,获得10
14秒前
江湖白晓灵应助周周采纳,获得10
14秒前
沉静凡松发布了新的文献求助10
14秒前
黎明发布了新的文献求助10
18秒前
19秒前
20秒前
K先生完成签到,获得积分10
20秒前
俏皮咖啡发布了新的文献求助10
22秒前
研友_VZG7GZ应助星hai采纳,获得50
24秒前
Dylan完成签到 ,获得积分10
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
星辰大海应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
烟花应助科研通管家采纳,获得10
26秒前
礼礼应助科研通管家采纳,获得10
26秒前
26秒前
SciGPT应助苏苏采纳,获得10
27秒前
27秒前
whohol发布了新的文献求助10
31秒前
无花果应助小巧念露采纳,获得10
32秒前
Hello应助细心蚂蚁采纳,获得10
33秒前
33秒前
34秒前
YeeStonee发布了新的文献求助10
34秒前
34秒前
黎明完成签到,获得积分10
35秒前
千里完成签到,获得积分10
37秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959810
关于积分的说明 8597138
捐赠科研通 2638270
什么是DOI,文献DOI怎么找? 1444230
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656624