亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new framework for drug–disease association prediction combing light-gated message passing neural network and gated fusion mechanism

计算机科学 消息传递 机制(生物学) 人工神经网络 联想(心理学) 相似性(几何) 邻接矩阵 节点(物理) 人工智能 理论计算机科学 分布式计算 工程类 认识论 图像(数学) 图形 哲学 结构工程
作者
Bao-Min Liu,Ying-Lian Gao,Dai-Jun Zhang,Feng Zhou,Juan Wang,Chun-Hou Zheng,Jin‐Xing Liu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:7
标识
DOI:10.1093/bib/bbac457
摘要

With the development of research on the complex aetiology of many diseases, computational drug repositioning methodology has proven to be a shortcut to costly and inefficient traditional methods. Therefore, developing more promising computational methods is indispensable for finding new candidate diseases to treat with existing drugs. In this paper, a model integrating a new variant of message passing neural network and a novel-gated fusion mechanism called GLGMPNN is proposed for drug-disease association prediction. First, a light-gated message passing neural network (LGMPNN), including message passing, aggregation and updating, is proposed to separately extract multiple pieces of information from the similarity networks and the association network. Then, a gated fusion mechanism consisting of a forget gate and an output gate is applied to integrate the multiple pieces of information to extent. The forget gate calculated by the multiple embeddings is built to integrate the association information into the similarity information. Furthermore, the final node representations are controlled by the output gate, which fuses the topology information of the networks and the initial similarity information. Finally, a bilinear decoder is adopted to reconstruct an adjacency matrix for drug-disease associations. Evaluated by 10-fold cross-validations, GLGMPNN achieves excellent performance compared with the current models. The following studies show that our model can effectively discover novel drug-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
焦璐关注了科研通微信公众号
4秒前
百里幻竹完成签到,获得积分20
13秒前
24秒前
焦璐发布了新的文献求助10
30秒前
今后应助玛卡巴卡马卡采纳,获得10
1分钟前
1分钟前
1分钟前
FashionBoy应助shuikoubl采纳,获得10
1分钟前
1分钟前
玛卡巴卡马卡完成签到,获得积分10
1分钟前
科研通AI2S应助物语采纳,获得10
2分钟前
Akim应助物语采纳,获得10
2分钟前
倦鸟余花完成签到,获得积分10
2分钟前
思源应助优美雨筠采纳,获得10
2分钟前
回眸完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
lanxinge完成签到 ,获得积分10
3分钟前
隐形曼青应助木禾火采纳,获得10
3分钟前
shuikoubl发布了新的文献求助10
3分钟前
3分钟前
优美雨筠发布了新的文献求助10
3分钟前
3分钟前
木禾火发布了新的文献求助10
3分钟前
3分钟前
iii完成签到 ,获得积分10
3分钟前
苑阿宇发布了新的文献求助10
3分钟前
Parotodus完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助百里幻竹采纳,获得10
4分钟前
FashionBoy应助可靠往事采纳,获得10
4分钟前
4分钟前
百里幻竹发布了新的文献求助10
4分钟前
单薄沐夏完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
AAS完成签到,获得积分10
5分钟前
5分钟前
Hello应助科研通管家采纳,获得10
5分钟前
可靠往事发布了新的文献求助10
5分钟前
田様应助缥缈的妙竹采纳,获得10
5分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463632
求助须知:如何正确求助?哪些是违规求助? 3057036
关于积分的说明 9055176
捐赠科研通 2746944
什么是DOI,文献DOI怎么找? 1507179
科研通“疑难数据库(出版商)”最低求助积分说明 696451
邀请新用户注册赠送积分活动 695936