A Novel Tensor Learning Model for Joint Relational Triplet Extraction

关系抽取 统计关系学习 计算机科学 张量(固有定义) 自然语言处理 关系(数据库) 判决 人工智能 相关性 水准点(测量) 关系模型 关系数据库 维数(图论) 分布语义学 理论计算机科学 机器学习 数据挖掘 数学 语义相似性 纯数学 地理 大地测量学 几何学
作者
Zhen Wang,Hongyi Nie,Wei Zheng,Yaqing Wang,Xuelong Li
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (4): 2483-2494 被引量:3
标识
DOI:10.1109/tcyb.2023.3265851
摘要

The relational triplet is a format to represent relational facts in the real world, which consists of two entities and a semantic relation between these two entities. Since the relational triplet is the essential component in a knowledge graph (KG), extracting relational triplets from unstructured texts is vital for KG construction and has attached increasing research interest in recent years. In this work, we find that relation correlation is common in real life and could be beneficial for the relational triplet extraction task. However, existing relational triplet extraction works neglect to explore the relation correlation that bottlenecks the model performance. Therefore, to better explore and take advantage of the correlation among semantic relations, we innovatively utilize a three-dimension word relation tensor to describe relations between words in a sentence. Then, we treat the relation extraction task as a tensor learning problem and propose an end-to-end tensor learning model based on Tucker decomposition. Compared with directly capturing correlation among relations in a sentence, learning the correlation of elements in a three-dimension word relation tensor is more feasible and could be addressed through tensor learning methods. To verify the effectiveness of the proposed model, extensive experiments are also conducted on two widely used benchmark datasets, that is, NYT and WebNLG. Results show that our model outperforms the state-of-the-art by a large margin of F1 scores, such as the developed model has an improvement of 3.2% on the NYT dataset compared to the state-of-the-art. Source codes and data can be found at https://github.com/Sirius11311/TLRel.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古力果发布了新的文献求助10
刚刚
言午完成签到,获得积分10
1秒前
潘苹果关注了科研通微信公众号
1秒前
hff发布了新的文献求助10
1秒前
自觉枫发布了新的文献求助10
1秒前
2秒前
3秒前
小蘑菇应助wanghaiyang采纳,获得10
3秒前
现代大树发布了新的文献求助10
5秒前
苏州河发布了新的文献求助10
6秒前
科目三应助duoduo采纳,获得10
6秒前
共享精神应助深情的金鱼采纳,获得10
6秒前
樊璐完成签到,获得积分10
6秒前
上官若男应助微微采纳,获得10
7秒前
慕青应助dyd采纳,获得10
7秒前
斯文败类应助JJun采纳,获得10
8秒前
8秒前
古力果完成签到,获得积分10
9秒前
10秒前
12秒前
13秒前
江柯发布了新的文献求助10
13秒前
mengtian发布了新的文献求助10
13秒前
15秒前
王wangWANG发布了新的文献求助10
15秒前
16秒前
16秒前
毕双洲发布了新的文献求助30
17秒前
科研通AI5应助科研小民工采纳,获得100
17秒前
充电宝应助hxj采纳,获得10
17秒前
啊楠完成签到,获得积分10
18秒前
huang发布了新的文献求助10
18秒前
Hello应助TCA不想循环采纳,获得10
19秒前
19秒前
19秒前
kkk完成签到,获得积分10
19秒前
qingshan完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554736
求助须知:如何正确求助?哪些是违规求助? 3130574
关于积分的说明 9387593
捐赠科研通 2829927
什么是DOI,文献DOI怎么找? 1555757
邀请新用户注册赠送积分活动 726286
科研通“疑难数据库(出版商)”最低求助积分说明 715561