石墨烯
材料科学
硼
掺杂剂
催化作用
密度泛函理论
兴奋剂
空位缺陷
氢
氢气储存
无机化学
纳米技术
化学物理
计算化学
光电子学
结晶学
有机化学
化学
复合材料
合金
作者
Chuangwei Liu,Haoren Zheng,Tianyi Wang,Zhongyuan Guo,Fangyuan Zhu,Hongbo Xie,Gaowu Qin,Hao Li,Song Li
标识
DOI:10.1016/j.jmst.2023.03.033
摘要
Room-temperature electrocatalytic nitrogen reduction reaction (NRR) is of paramount significance for the fertilizer industry and fundamental catalysis science. However, many NRR catalysts were based on the use of metals. Herein, we focus on exploring boron-based, metal-free, efficient catalysts for NRR by density functional theory calculations with van der Waals corrections (DFT+D3). Our results show that the NRR performance of the boron active site can be improved by tuning the N-coordination environment in a graphene sheet, and the B-N-C structures show excellent stability. By considering the correlation between the Bader charges of the boron dopant over N-decorated graphene and their NRR activities, the rational design principle of a boron-based catalyst for NRR is developed. The boron-site with one pyridinic nitrogen in a double-vacancy structure is found to be a highly active center, with low reaction energy (0.53 eV) and kinetic barrier (0.84 eV) through the distal mechanism. We also found that the charge loss of boron considerably hampers hydrogen adsorption, which in turn promotes the NRR efficiency by hindering the competing hydrogen evolution. This work offers new insights into developing low-cost, highly effective boron-based materials as promising electrocatalysts for green ammonia synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI