已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Impact of digital input on enterprise green productivity: Micro evidence from the Chinese manufacturing industry

生产力 面板数据 制造工程 业务 中国工业 产业组织 制造业 数字化转型 托比模型 工程类 环境经济学 营销 中国 计算机科学 经济 计量经济学 经济增长 万维网 法学 政治学
作者
Wenjie Zhang,Ning Xu,Chengyu Li,Xinghua Cui,He Zhang,Wanxu Chen
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:414: 137272-137272 被引量:44
标识
DOI:10.1016/j.jclepro.2023.137272
摘要

Digital input, as an important engine for high-quality development, has provided new impetus for green transformation and development of manufacturing enterprises. In this study, unique panel data samples matched from the Global Multi-regional Input-output Database from 2000 to 2014, the Chinese Industrial Enterprise database, and the Chinese Industrial Enterprise Pollution Database are used to estimate the green productivity of Chinese manufacturing enterprises by adopting a non-radial and non-angular SBM model that considers unexpected outputs. Furthermore, a panel Tobit model is adopted to empirically test the impact of digital input on the green productivity of manufacturing enterprises. The research results indicate that: (1) Digital input has a significant positive impact on the green productivity of manufacturing enterprises, and a series of robustness tests have confirmed this conclusion. This research conclusion provides micro evidence and empirical support for empowering the green transformation of manufacturing enterprises with digital economic development. (2) The heterogeneity analysis indicates that, for different enterprises, digital input contributes more significantly to green productivity in foreign-funded enterprises, state-owned enterprises, and larger-scale enterprises. Regarding industry types, digital input positively contributes to green productivity only in labor-intensive and knowledge-technology-intensive manufacturing enterprises. In terms of regions, the contribution of digital input to the green productivity of enterprises in the east and central regions and regions with higher levels of industrial agglomeration is more significant. Heterogeneity analysis from different perspectives can help optimize enterprise choice behavior and green transformation development strategies, thus achieving better digital empowerment. (3) Further mechanism tests reveal that digital input promotes the improvement of green productivity of manufacturing enterprises through the effects of technological progress, factor structure optimization, and innovation, thereby providing a feasible path for relying on digital transformation to promote the improvement of green productivity of manufacturing enterprises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nV2ROn完成签到,获得积分10
刚刚
亦屿森发布了新的文献求助10
1秒前
orixero应助咸鱼爱喝汤采纳,获得10
1秒前
wen完成签到 ,获得积分10
2秒前
快乐咸鱼完成签到 ,获得积分10
2秒前
smj完成签到,获得积分10
3秒前
5秒前
8秒前
学术废物完成签到 ,获得积分10
10秒前
能干涵瑶完成签到,获得积分10
10秒前
11秒前
完美世界应助干净溪流采纳,获得10
11秒前
小米发布了新的文献求助10
11秒前
医痞子完成签到,获得积分10
14秒前
炒栗子发布了新的文献求助10
15秒前
脑洞疼应助liweiDr采纳,获得10
17秒前
21秒前
爱吃蛋挞发布了新的文献求助20
23秒前
CLL完成签到,获得积分20
23秒前
25秒前
竹外桃花发布了新的文献求助20
25秒前
25秒前
颜林林完成签到,获得积分10
27秒前
炒栗子发布了新的文献求助10
27秒前
qdysci完成签到 ,获得积分10
27秒前
29秒前
kemin_jin发布了新的文献求助10
32秒前
LawShu完成签到 ,获得积分10
33秒前
34秒前
香蕉觅云应助dalin采纳,获得10
35秒前
36秒前
liweiDr发布了新的文献求助10
39秒前
Akim应助丙泊酚采纳,获得10
40秒前
charm完成签到 ,获得积分10
42秒前
小粒橙完成签到 ,获得积分10
43秒前
叶子发布了新的文献求助10
49秒前
拥有八根情丝完成签到 ,获得积分10
52秒前
52秒前
爆米花应助稳重的书兰采纳,获得10
52秒前
丙泊酚完成签到,获得积分10
52秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139336
求助须知:如何正确求助?哪些是违规求助? 2790244
关于积分的说明 7794607
捐赠科研通 2446679
什么是DOI,文献DOI怎么找? 1301314
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109