Cooperative tri-population based evolutionary algorithm for large-scale multi-objective optimization

人口 计算机科学 进化算法 数学优化 维数之咒 早熟收敛 多目标优化 趋同(经济学) 帕累托原理 比例(比率) 机器学习 人工智能 数学 遗传算法 地理 人口学 社会学 地图学 经济 经济增长
作者
Weiwei Zhang,Sanxing Wang,Guoqing Li,Weizheng Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:227: 120290-120290 被引量:2
标识
DOI:10.1016/j.eswa.2023.120290
摘要

The high dimensionality of decision variables in large-scale multi-objective optimization problems poses significant challenges for evolutionary algorithms, which often struggle to achieve efficient search, are prone to premature convergence, and require a substantial amount of computing resources to converge to the Pareto Front. To address these challenges, a cooperative tri-population based evolutionary algorithm is proposed in this paper. Firstly, the population is partitioned into three subpopulations according to the Pareto dominant relation and crowdedness, including a subpopulation with well-distributed nondominated individuals, a subpopulation with crowded non-dominated individuals, and a subpopulation with dominated individuals. Three distinct reproduction operators are then applied to each subpopulation. The first subpopulation uses fully informed search-based reproduction to locate the true Pareto Front, while the second subpopulation adopts segment learning-based reproduction to preserve elite segments and promote exploitation. Finally, directional exploration-based reproduction is used for the third subpopulation to explore the search space and promote diversity. The proposed algorithm is capable of exploring and exploiting superior solutions through co-evolution among diverse subpopulations. Experiments are performed on 36 LSMOP benchmarks with up to 50,000 decision variables to validate the effectiveness of the proposed algorithm, which demonstrates superior performance compared to five state-of-the-art algorithms in handling large-scale multi-objective optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
刚刚
刚刚
迟大猫应助科研通管家采纳,获得30
刚刚
思源应助科研通管家采纳,获得10
1秒前
沙不凡完成签到,获得积分10
1秒前
迟大猫应助科研通管家采纳,获得30
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
沉静丹寒发布了新的文献求助10
1秒前
拒马完成签到,获得积分10
2秒前
王俊发布了新的文献求助10
2秒前
Ava应助君与同行采纳,获得10
2秒前
madefu完成签到,获得积分10
3秒前
3秒前
温婉的访风完成签到,获得积分10
3秒前
3秒前
逸云发布了新的文献求助10
3秒前
荒野女巫完成签到,获得积分10
4秒前
一二发布了新的文献求助10
4秒前
冷傲海完成签到,获得积分10
4秒前
humble完成签到 ,获得积分10
5秒前
阿七完成签到,获得积分10
5秒前
baolong发布了新的文献求助10
5秒前
5秒前
tt发布了新的文献求助10
5秒前
步步完成签到,获得积分10
5秒前
6秒前
荒野女巫发布了新的文献求助10
6秒前
保护野菠萝完成签到,获得积分10
7秒前
ynn发布了新的文献求助30
8秒前
清欢发布了新的文献求助10
8秒前
沉静丹寒完成签到,获得积分20
8秒前
默默地读文献应助王俊采纳,获得20
9秒前
坠落的24直升机完成签到,获得积分10
9秒前
wanci应助121采纳,获得10
10秒前
xiami完成签到,获得积分10
10秒前
jing发布了新的文献求助10
10秒前
10秒前
肖亚鑫完成签到,获得积分10
10秒前
11秒前
君与同行完成签到,获得积分10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729900
求助须知:如何正确求助?哪些是违规求助? 3274756
关于积分的说明 9988621
捐赠科研通 2990154
什么是DOI,文献DOI怎么找? 1640914
邀请新用户注册赠送积分活动 779488
科研通“疑难数据库(出版商)”最低求助积分说明 748235