Four-dimensional reconstruction and characterization of bladder deformations

背景(考古学) 分割 盆底 医学 豪斯多夫距离 计算机科学 三维重建 呼吸 计算机视觉 人工智能 外科 解剖 地质学 古生物学
作者
Augustin C. Ogier,Stanislas Rapacchi,Marc‐Emmanuel Bellemare
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:237: 107569-107569
标识
DOI:10.1016/j.cmpb.2023.107569
摘要

Pelvic floor disorders are prevalent diseases and patient care remains difficult as the dynamics of the pelvic floor remains poorly understood. So far, only 2D dynamic observations of straining exercises at excretion are available in the clinics and 3D mechanical defects of pelvic organs are not well studied. In this context, we propose a complete methodology for the 3D representation of non-reversible bladder deformations during exercises, combined with a 3D representation of the location of the highest strain areas on the organ surface.Novel image segmentation and registration approaches have been combined with three geometrical configurations of up-to-date rapid dynamic multi-slice MRI acquisitions for the reconstruction of real-time dynamic bladder volumes.For the first time, we proposed real-time 3D deformation fields of the bladder under strain from in-bore forced breathing exercises. The potential of our method was assessed on eight control subjects undergoing forced breathing exercises. We obtained average volume deviations of the reconstructed dynamic volume of bladders around 2.5% and high registration accuracy with mean distance values of 0.4 ± 0.3 mm and Hausdorff distance values of 2.2 ± 1.1 mm.The proposed framework provides proper 3D+t spatial tracking of non-reversible bladder deformations. This has immediate applicability in clinical settings for a better understanding of pelvic organ prolapse pathophysiology. This work can be extended to patients with cavity filling or excretion problems to better characterize the severity of pelvic floor pathologies or to be used for preoperative surgical planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hecate发布了新的文献求助30
刚刚
1秒前
1秒前
1秒前
FashionBoy应助jiangjiarui采纳,获得10
1秒前
无花果应助pl采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
华仔应助xxl采纳,获得10
2秒前
2秒前
CodeCraft应助调皮的桐采纳,获得10
2秒前
万海完成签到,获得积分10
2秒前
3秒前
3秒前
LEON发布了新的文献求助10
3秒前
3秒前
amazeman111完成签到,获得积分10
4秒前
www发布了新的文献求助10
4秒前
美丽万声完成签到,获得积分10
4秒前
4秒前
croft发布了新的文献求助30
5秒前
6秒前
6秒前
Antoneva完成签到,获得积分10
6秒前
ruby发布了新的文献求助10
6秒前
orixero应助星星采纳,获得10
6秒前
7秒前
tuluiioo发布了新的文献求助10
7秒前
BRM完成签到,获得积分10
8秒前
阳光彩虹小白马完成签到,获得积分20
8秒前
鳗鱼不尤发布了新的文献求助10
8秒前
内向曼彤发布了新的文献求助10
9秒前
9秒前
橘子水完成签到 ,获得积分20
9秒前
量子星尘发布了新的文献求助10
9秒前
典雅的人生应助zz采纳,获得10
9秒前
11秒前
11秒前
美丽映寒完成签到,获得积分10
11秒前
华仔应助烟雨采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759349
求助须知:如何正确求助?哪些是违规求助? 5519823
关于积分的说明 15393808
捐赠科研通 4896421
什么是DOI,文献DOI怎么找? 2633690
邀请新用户注册赠送积分活动 1581712
关于科研通互助平台的介绍 1537250