Four-dimensional reconstruction and characterization of bladder deformations

背景(考古学) 分割 盆底 医学 豪斯多夫距离 计算机科学 三维重建 呼吸 计算机视觉 人工智能 外科 解剖 地质学 古生物学
作者
Augustin C. Ogier,Stanislas Rapacchi,Marc‐Emmanuel Bellemare
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:237: 107569-107569
标识
DOI:10.1016/j.cmpb.2023.107569
摘要

Pelvic floor disorders are prevalent diseases and patient care remains difficult as the dynamics of the pelvic floor remains poorly understood. So far, only 2D dynamic observations of straining exercises at excretion are available in the clinics and 3D mechanical defects of pelvic organs are not well studied. In this context, we propose a complete methodology for the 3D representation of non-reversible bladder deformations during exercises, combined with a 3D representation of the location of the highest strain areas on the organ surface.Novel image segmentation and registration approaches have been combined with three geometrical configurations of up-to-date rapid dynamic multi-slice MRI acquisitions for the reconstruction of real-time dynamic bladder volumes.For the first time, we proposed real-time 3D deformation fields of the bladder under strain from in-bore forced breathing exercises. The potential of our method was assessed on eight control subjects undergoing forced breathing exercises. We obtained average volume deviations of the reconstructed dynamic volume of bladders around 2.5% and high registration accuracy with mean distance values of 0.4 ± 0.3 mm and Hausdorff distance values of 2.2 ± 1.1 mm.The proposed framework provides proper 3D+t spatial tracking of non-reversible bladder deformations. This has immediate applicability in clinical settings for a better understanding of pelvic organ prolapse pathophysiology. This work can be extended to patients with cavity filling or excretion problems to better characterize the severity of pelvic floor pathologies or to be used for preoperative surgical planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助lc采纳,获得10
刚刚
aprilvanilla完成签到,获得积分10
1秒前
Auxence发布了新的文献求助30
1秒前
体贴的靖仇完成签到 ,获得积分20
1秒前
陈米米完成签到 ,获得积分10
1秒前
3秒前
李四完成签到 ,获得积分10
4秒前
英俊的铭应助孙先生采纳,获得10
5秒前
乐乐应助莲蓬采纳,获得10
5秒前
乐生完成签到,获得积分10
7秒前
李健应助YDL采纳,获得10
9秒前
chen完成签到,获得积分10
9秒前
英姑应助昱旻采纳,获得30
9秒前
牛太虚完成签到,获得积分10
10秒前
花佩剑完成签到,获得积分10
10秒前
10秒前
Akim应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
zho应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得30
13秒前
鹿飞松应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得30
13秒前
情怀应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
13秒前
爆米花应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
klb13应助科研通管家采纳,获得20
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242994
求助须知:如何正确求助?哪些是违规求助? 2887092
关于积分的说明 8246361
捐赠科研通 2555681
什么是DOI,文献DOI怎么找? 1383795
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625631