Four-dimensional reconstruction and characterization of bladder deformations

背景(考古学) 分割 盆底 医学 豪斯多夫距离 计算机科学 三维重建 呼吸 计算机视觉 人工智能 外科 解剖 地质学 古生物学
作者
Augustin C. Ogier,Stanislas Rapacchi,Marc‐Emmanuel Bellemare
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:237: 107569-107569
标识
DOI:10.1016/j.cmpb.2023.107569
摘要

Pelvic floor disorders are prevalent diseases and patient care remains difficult as the dynamics of the pelvic floor remains poorly understood. So far, only 2D dynamic observations of straining exercises at excretion are available in the clinics and 3D mechanical defects of pelvic organs are not well studied. In this context, we propose a complete methodology for the 3D representation of non-reversible bladder deformations during exercises, combined with a 3D representation of the location of the highest strain areas on the organ surface.Novel image segmentation and registration approaches have been combined with three geometrical configurations of up-to-date rapid dynamic multi-slice MRI acquisitions for the reconstruction of real-time dynamic bladder volumes.For the first time, we proposed real-time 3D deformation fields of the bladder under strain from in-bore forced breathing exercises. The potential of our method was assessed on eight control subjects undergoing forced breathing exercises. We obtained average volume deviations of the reconstructed dynamic volume of bladders around 2.5% and high registration accuracy with mean distance values of 0.4 ± 0.3 mm and Hausdorff distance values of 2.2 ± 1.1 mm.The proposed framework provides proper 3D+t spatial tracking of non-reversible bladder deformations. This has immediate applicability in clinical settings for a better understanding of pelvic organ prolapse pathophysiology. This work can be extended to patients with cavity filling or excretion problems to better characterize the severity of pelvic floor pathologies or to be used for preoperative surgical planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助小葛采纳,获得10
刚刚
研友_VZG7GZ应助小葛采纳,获得10
刚刚
yfn发布了新的文献求助10
刚刚
1秒前
Rxs完成签到,获得积分10
1秒前
Sharon完成签到,获得积分10
3秒前
彭于晏应助yqsf789采纳,获得10
3秒前
天地一体完成签到,获得积分10
3秒前
赘婿应助认真的映安采纳,获得10
3秒前
3秒前
4秒前
Owen应助zhull采纳,获得20
4秒前
4秒前
5秒前
xpy0227完成签到,获得积分10
6秒前
6秒前
科目三应助zyq采纳,获得10
7秒前
7秒前
7秒前
斯文败类应助自由的筝采纳,获得10
8秒前
蓝天发布了新的文献求助10
8秒前
烂漫耳机发布了新的文献求助10
8秒前
Akim应助奔跑西木采纳,获得10
8秒前
8秒前
复杂豁完成签到,获得积分10
8秒前
8秒前
9秒前
zqx完成签到,获得积分10
9秒前
9秒前
9秒前
利好完成签到 ,获得积分10
9秒前
王莹莹发布了新的文献求助10
10秒前
10秒前
10秒前
坚果完成签到,获得积分20
10秒前
11秒前
hy发布了新的文献求助10
11秒前
时尚初南发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836