EEG-Based Emotion Recognition Using Trainable Adjacency Relation Driven Graph Convolutional Network

计算机科学 判别式 脑电图 邻接表 模式识别(心理学) 人工智能 相关性 卷积神经网络 图形 机器学习 语音识别 理论计算机科学 算法 数学 心理学 几何学 精神科
作者
Wei Li,Mingming Wang,Junyi Zhu,Aiguo Song
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (4): 1656-1672 被引量:22
标识
DOI:10.1109/tcds.2023.3270170
摘要

In recent years, there has been a growing research interest in using deep learning to resolve the issue of electroencephalogram (EEG)-based emotion recognition. Current research emphasizes exploiting the useful information from each single EEG channel or each individual set of multichannel EEG, but overlooks the correlation information among different multichannel EEG sets. To explore such discriminative correlation information, we propose a novel and effective method, "trainable adjacency relation driven graph convolutional network (TARDGCN)," which contains two complementary modules: 1) trainable adjacency relation (TAR) and 2) graph convolutional network (GCN). TAR optimizes the local pairwise positions of multichannel EEG sets, which helps form an improved graphic representation for GCN to learn the global correlation among these sets for classification. The proposed method is capable of dealing with the problem of small sample size but large data variation in this issue. Our experimental results conducted on the databases DREAMER and DEAP in the subject-dependent and subject-independent modes show that TARDGCN outperforms the state-of-the-art approaches in classifying all of valence, arousal, and dominance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知秋发布了新的文献求助10
刚刚
852应助煜清清采纳,获得20
1秒前
田様应助煜清清采纳,获得10
1秒前
万能图书馆应助煜清清采纳,获得20
1秒前
小蘑菇应助煜清清采纳,获得10
1秒前
所所应助煜清清采纳,获得10
1秒前
Hello应助煜清清采纳,获得10
1秒前
1秒前
orixero应助lv采纳,获得10
2秒前
Jasper应助aibing采纳,获得10
2秒前
2秒前
研猫发布了新的文献求助10
2秒前
3秒前
3秒前
Zhang_BY完成签到,获得积分10
3秒前
3秒前
zxs发布了新的文献求助10
3秒前
star应助qq采纳,获得10
3秒前
4秒前
111完成签到 ,获得积分10
4秒前
4秒前
大婷子发布了新的文献求助10
4秒前
赘婿应助or采纳,获得10
4秒前
烟花应助科研小白采纳,获得10
5秒前
5秒前
愤怒的小甜瓜完成签到 ,获得积分10
5秒前
子非鱼发布了新的文献求助10
5秒前
5秒前
浮游应助Rachel3344采纳,获得10
5秒前
郇郇完成签到,获得积分10
5秒前
希望天下0贩的0应助洛玄采纳,获得10
5秒前
6秒前
6秒前
万能图书馆应助灵巧的穆采纳,获得10
6秒前
jungle发布了新的文献求助10
6秒前
6秒前
曦曦完成签到,获得积分10
6秒前
科研通AI6应助shining采纳,获得10
7秒前
mm发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545851
求助须知:如何正确求助?哪些是违规求助? 4631846
关于积分的说明 14622939
捐赠科研通 4573564
什么是DOI,文献DOI怎么找? 2507609
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455594