Relation-Preserving Feature Embedding for Unsupervised Person Re-Identification

计算机科学 鉴定(生物学) 特征(语言学) 关系(数据库) 人工智能 模式识别(心理学) 嵌入 特征提取 数据挖掘 语言学 植物 生物 哲学
作者
Xueping Wang,Min Liu,Fei Wang,Jianhua Dai,An-An Liu,Yaonan Wang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 714-723 被引量:2
标识
DOI:10.1109/tmm.2023.3270636
摘要

Some unsupervised approaches have been proposed recently for the person re-identification (ReID) problem since annotations of samples across cameras are time-consuming. However, most of these methods focus on the appearance content of the sample itself, and thus seldom take the structure relations among samples into account when learning the feature representation, which would provide a valuable guide for learning the representations of the samples. Thus hard samples may not be well solved due to the limited or even misleading information of the sample itself. To address this issue, in this article, we propose a Relation-Preserving Feature Embedding (RPE) model that leverages structure relations among samples to boost the performance of the unsupervised person ReID methods without requiring any sample annotations. RPE aims at integrating the sample content and the neighborhood structure relations among samples into the learning of feature embeddings by combining the advantages of the autoencoder and graph autoencoder. Specifically, a relation and content information fusion (RCIF) module is proposed to dynamically merge the information from both perspectives of content and relation levels for feature embedding learning. Also, due to the lack of the identity labels of samples, we adopt an adaptive optimization strategy to update the affinity relations among samples instead of the reconstruction of the whole affinity matrix for optimizing the RPE model, which is more suitable for the unsupervised ReID task. Rigorous experiments on three widely-used large-scale benchmarks for person ReID demonstrate the superiority of the proposed method over current state-of-the-art unsupervised methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
归尘发布了新的文献求助30
2秒前
嘞是举仔发布了新的文献求助10
3秒前
4秒前
5秒前
大模型应助Ki_Ayasato采纳,获得10
6秒前
科研通AI2S应助嘞是举仔采纳,获得10
6秒前
7秒前
谨慎的晓蕾完成签到 ,获得积分10
7秒前
8秒前
呃呃完成签到,获得积分10
8秒前
Rabbit发布了新的文献求助10
9秒前
10秒前
DDEEE发布了新的文献求助10
11秒前
慕青应助大喵采纳,获得10
11秒前
丘比特应助Xian采纳,获得10
12秒前
公冶笑白发布了新的文献求助10
13秒前
14秒前
Ploaris发布了新的文献求助10
14秒前
研友_Z63kg8发布了新的文献求助20
15秒前
呃呃发布了新的文献求助10
15秒前
调皮的千万完成签到,获得积分10
15秒前
Fengliguantou发布了新的文献求助10
16秒前
hecheng0511完成签到,获得积分10
16秒前
J.发布了新的文献求助20
18秒前
ShenLi应助QDU采纳,获得10
20秒前
领导范儿应助小垃圾采纳,获得10
25秒前
研友_Z63kg8完成签到,获得积分10
25秒前
28秒前
静一静完成签到,获得积分10
28秒前
29秒前
29秒前
ycccccc完成签到 ,获得积分10
29秒前
李健应助huangyikun采纳,获得10
30秒前
30秒前
小药同学完成签到,获得积分10
31秒前
宝贝丫头发布了新的文献求助10
32秒前
白桦林泪发布了新的文献求助10
33秒前
小药同学发布了新的文献求助10
33秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190